PMA Prozeß- und Maschinen-Automation GmbH

KS 90-1 programmer and KS 92-1 programmer

More efficiency in engineering, more overview in operating: The projecting environment for the BluePort[®] controllers

Description of symbols in the text:

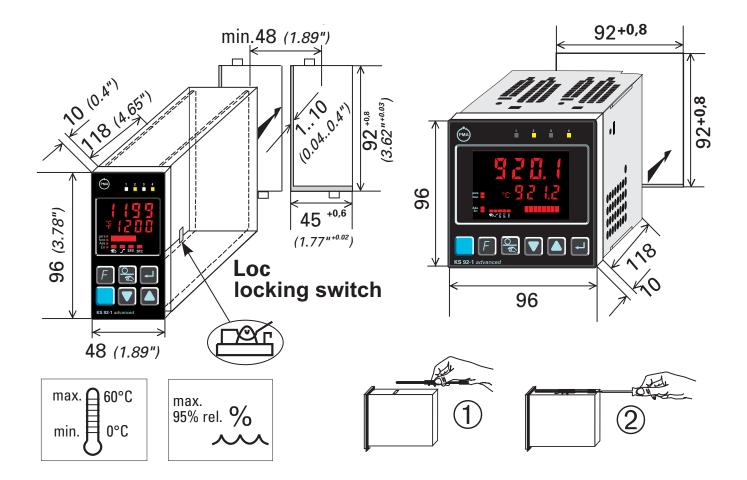
(i) General information

on the device:

 \triangle Follow the operating instructions

- ⚠ General warning
- Attention: ESD-sensitive devices

© PMA Prozeß- und Maschinen-Automation GmbH • Printed in Germany All rights reserved. No part of this document may bereproduced or published in any form or by any means without prior written permission from the copyright owner.


> A publication of PMA Prozeß- und Maschinen Automation P.O.Box 310229 D-34058 Kassel Germany

Content

1.	Mou	Inting	. 5		
2.	Electrical connections				
	2.1	Connecting diagram	. 6		
	$\overline{2.2}$ Terminal connection				
3.	Ope	ration			
	$\frac{-1}{3.1}$	Front view			
	3.2	Behaviour after power-on			
	3.3	Operating level			
	3.4	Error list / Maintenance manager.			
		-			
	3.5	Self-tuning. . 3.5.1 Preparation for self-tuning.			
		 3.5.2 Optimization after start-up or at the set-point			
		3.5.4 Step attempt after start-up			
		3.5.4 Step attempt after start-up			
		3.5.6 Optimization at the set-point			
		3.5.7 Optimization at the set-point for 3-point stepping controller			
		3.5.8 Self-tuning start			
		3.5.9 Self-tuning cancellation			
		3.5.10 Acknowledgement procedures in case of unsuccessful self-tuning .			
		3.5.11 Examples for self-tuning attempts			
	3.6	Manual self-tuning	23		
	3.7	Second PID parameter set	24		
	3.8	Alarm handling			
	3.9	Operating structure	. 27		
4.	Con	figuration level			
	4.1	Configuration parameters	29		
	4.2	Set-point processing.			
	4.3	KS90-1 cooling functions			
		4.3.1 Standard ($[Y [L = []])$			
		4.3.2 Heating and cooling with constant period ($\Box \Box \Box \Box = \exists$)			
	4.4	Configuration examples			
		4.4.1 On-Off controller / Signaller (inverse)			
		4.4.2 2-point controller (inverse)			
		4.4.3 3-point controller (relay & relay)			
		4.4.4 3-point stepping controller (relay & relay)			
		4.4.5 Continuous controller (inverse)			

	4.4.6 Δ Z Y - Off controller / 2-point controller with pre-contact.	19
	4.4.7 Continuous controller with integrated positioner ($LnEr/LEnc = 5$).	50
	4.4.8 Measured value output	;1
5.	Parameter setting level	2
	$\overline{5.1}$ Parameter survey	2
	$\overline{5.2}$ Parameters	3
	$\overline{\overline{5.3}}$ Input scaling.	5
	$5.3.1$ Input $I \cap P.1$ and $I \cap P.3$	
	5.3.2 Input 1 nP.2	;5
6.	Calibration level	6
7.	Programmer level	9
	$\overline{7.1}$ Parameter survey	
	$\overline{7.2}$ Parameters \ldots 6	
	$\overline{7.3}$ Programmer description	
	7.3.1 General	
	7.3.2 Programmer set-up:	
	7.3.3 Operation	
	7.3.4 Programmer display $\ldots \ldots \ldots$	6
	7.3.5 Segment type	
	7.3.6 Bandwidth monitoring $\ldots \ldots \ldots$	
	7.3.7 Search run at programmer start	
0	7.3.8 Behaviour after mains recovery or sensor error	
8.	Special functions	
	$8.1 KS90-1 as Modbus master \dots 6$	
	8.2 Back-up controller (PROFIBUS)	
	$\underline{8.3}$ Linearization	
	8.4 Loop alarm	1
	8.5 Heating current input / heating current alarm	1
9.	BlueControl	2
10.	Versions	3
11.	Technical data	4
12.	Safety hints	
		-

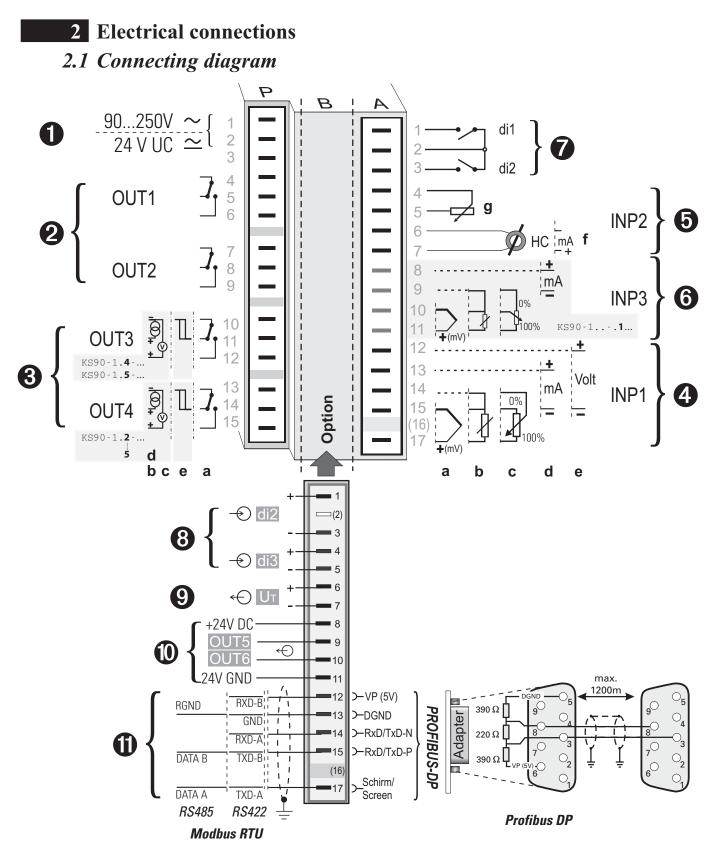
1 Mounting



Fix the instrument **only at top** and **bottom** to avoid damaging it.

Safety switch:

For access to the safety switch, the controller must be withdrawn from the housing. Squeeze the top and bottom of the front bezel between thumb and forefinger and pull the controller firmly from the housing.


Loc	open	Access to the levels is as adjusted by means of BlueCon- trol [®] (engineering tool) 2	
	closed ()	all levels accessible wihout restriction	

2 Default setting: display of all levels suppressed, password PR55 = 0FF

Caution! The unit contains ESD-sensitive components.

Dependent of order, the controller is fitted with :

- flat-pin terminals 1 x 6,3mm or 2 x 2,8mm to DIN 46 244 or
- screw terminals for 0,5 to 2,5mm²
 On instruments with screw terminals, the insulation must be stripped by min.
 12 mm. Choose end crimps accordingly!

2.2 Terminal connection

Power supply connection **①**

See chapter 11 "Technical data"

Connection of outputs OUT1/2 2

Relay outputs (250V/2A), potential-free changeover contact

Connection of outputs OUT3/4 (3)

- a relay (250V/2A), potential-free changeover contact universal output
- **b** current (0/4...20mA)
- **c** voltage (0/2...10V)
- **d** transmitter supply
- e logic (0..20mA / 0..12V)

Connection of input INP1 **④**

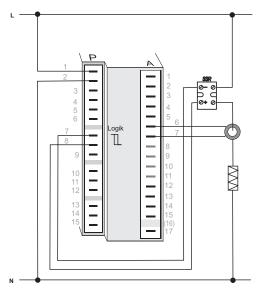
Input mostly used for variable x1 (process value)

- a thermocouple
- **b** resistance thermometer (Pt100/ Pt1000/ KTY/ ...)
- **c** current (0/4...20mA)
- **d** voltage (0/2...10V)

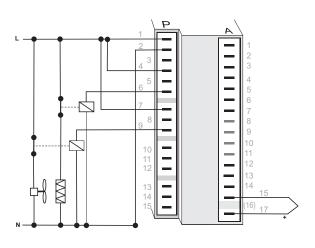
Connection of input INP2 **5**

- f heating current input (0..50mA AC) or input for ext. set-point (0/4...20mA)
- g potentiometer input for position feedback

Connection of input INP3 6


As input INP1, but without voltage

Connection of inputs di1, di2 👩

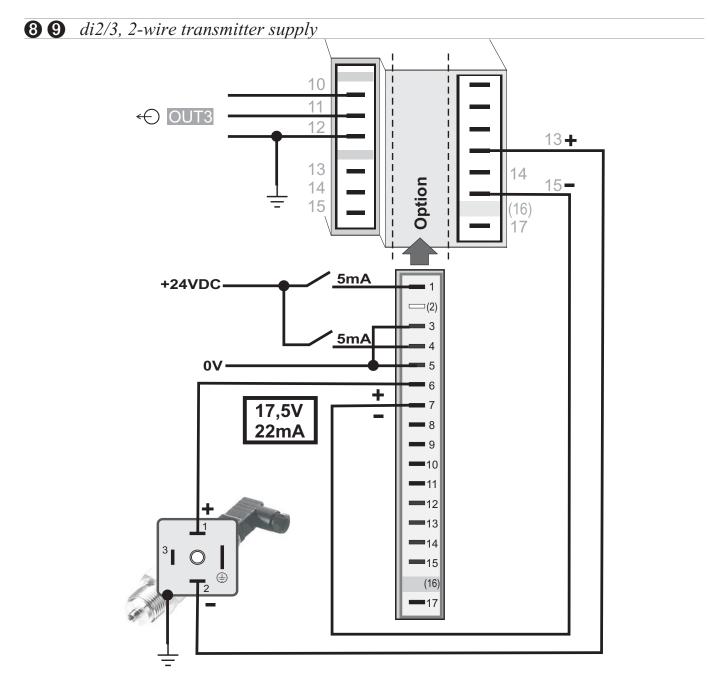

Digital input, configurable as switch or push-button

Connection of inputs di2/3 (option)

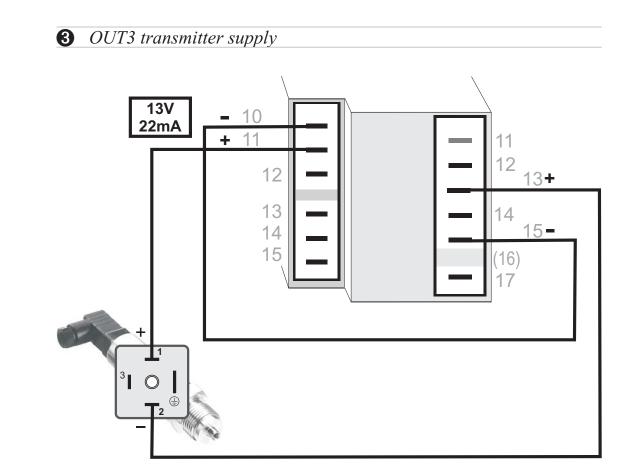
Digital inputs (24VDC external), galvanically isolated, configurable as switch or push-button **5** *INP2 current tansformer*

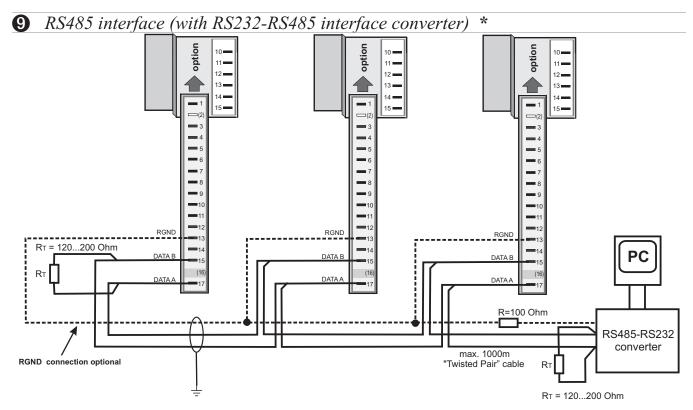
2 *OUT1/2 heating/cooling*

Connection of output U (option)

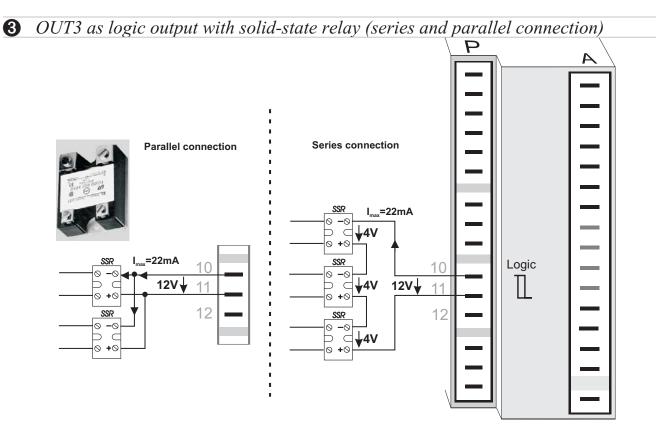

Supply voltage connection for external energization

Connection of outputs OUT5/6 (0) (option)

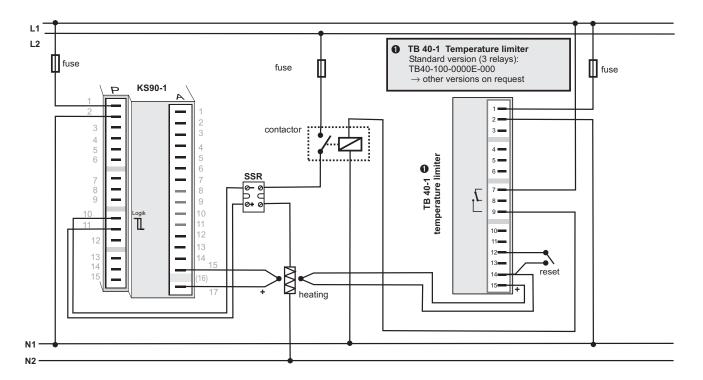

Digital outputs (opto-coupler), galvanic isolated, common positive control voltage, output rating: 18...32VDC


Connection of bus interface **①** (option)

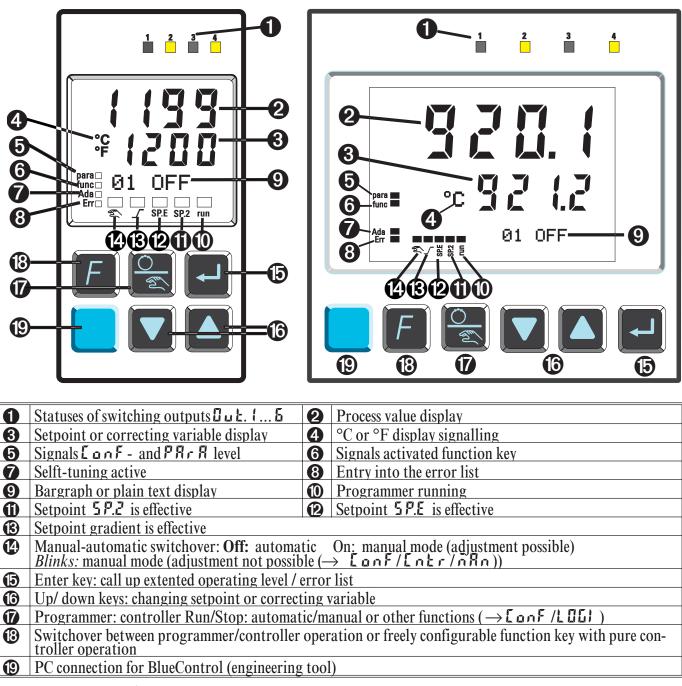
PROFIBUS DP or RS422/485 interface with Modbus RTU protocol



Analog outputs OUT3 or OUT4 and transmitter supply U_T are connected to different voltage potentials. Therefore, take care not to make an external galvanic connection between OUT3/4 and U_T with analog outputs!



* Interface description Modbus RTU in speperate manual: see page 73.


KS90-1 connecting example:

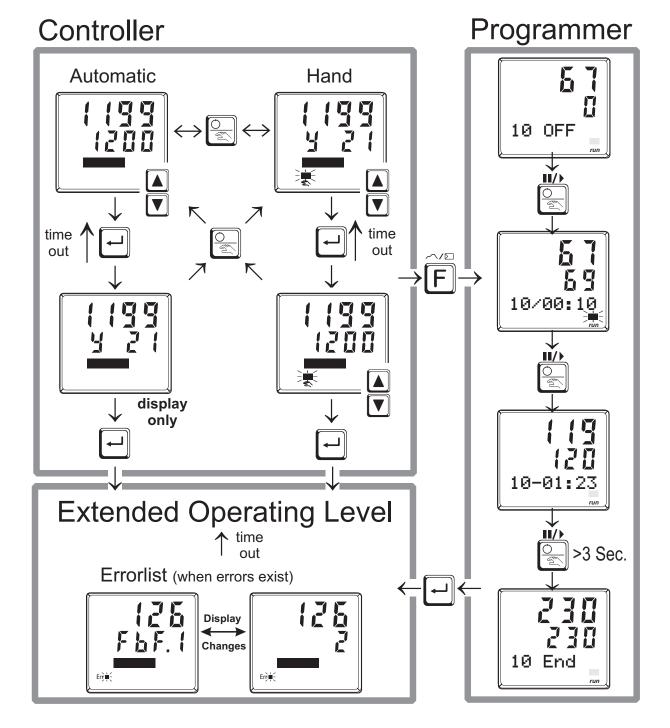
CAUTION: Using a temperature limiter is recommendable in systems where overtemperature implies a fire hazard or other risks.

3 Operation

3.1 Front view

LED colours:

LED 1, 2, 3, 4: yellow Bargraph: red other LEDs: red


) In the upper display line, the process value is <u>always</u> displayed. At parameter, configuration, calibration as well as extended operating level, the bottom display line changes cyclically between parameter name and parameter value.

3.2 Behaviour after power-on

After supply voltage switch-on, the unit starts with the **operating level**. The unit is in the condition which was active before power-off. If KS 90-1 was in manual mode at supply voltage switch-off, the controller will re-start with the last output value in manual mode at power-on.

3.3 Operating level

The content of the extended operating level is determined by means of BlueControl (engineering tool). Parameters which are used frequently or the display of which is important can be copied to the extended operating level.

Behaviour after power-on

3.4 Error list / Maintenance manager

With one or several errors, the extended operating level always starts with the error list. Signalling an actual entry in the error list (alarm, error) is done by the Err LED in the display. To reach the error list press — twice.

Err LED status	Signification	Proceed as follows
blinks(status 2)	Alarm due to existing error	Determine the error type in the error list After error correction the unit changes to status 1
lit(status 1)	Error removed, alarm not ack- nowledged	Acknowledge the alarm in the error list pressing key Eorl The alarm entry was deleted (status 0).
off(status 0)	No error, all alarm entries deleted	-Not visible except when acknowledging

Error list:

		Error list:				
Name	Description	Reason	Possible remedial action			
E. (Internal error,	- E.g. defective EEPROM	- Contact West service			
	cannot be removed		- Return unit to our factory			
5.3	Internal error, can	- e.g. EMC trouble	- Keep measurement and power supply			
	be reset		cables in separate runs			
			- Ensure that interference suppression of			
			contactors is provided			
E.3	Configuration error, can be reset	- wrong configuration	- Check interaction of configuration /			
	can be reset	- missing configuration	parameters			
E.Y	Hardware error	- Codenumber and hardware are				
		not identical	- Elektronic-/Optioncard must be exchanged			
F 6 F. 1	Sensor break INP1	- Sensor defective	- Replace INP1 sensor			
		- Faulty cabling	- Check INP1 connection			
5ht.1	Short circuit INP1	- Sensor defective	- Replace INP1 sensor			
		- Faulty cabling	- Check INP1 connection			
P01.1	INP1polarity error	- Faulty cabling	- Reverse INP1 polarity			
F 6 F.2	Sensor break INP2	- Sensor defective	- Replace INP2 sensor			
		- Faulty cabling	- Check INP2 connection			
562.2	Short circuit INP2	- Sensor defective	- Replace sensor INP2			
		- Faulty cabling	- Check INP2 connection			
P01.2	INP2 polarity	- Faulty cabling	- Reverse INP2 polarity			
F 6 F.3	Sensor break INP3	- Sensor defective	- Replace INP3 sensor			
		- Faulty cabling	- Check INP3 connection			
Sht.3	Short circuit INP3	- Sensor defective	- Replace sensor INP3			
		- Faulty cabling	- Check INP3 connection			
POL.3	INP3 polarity	- Faulty cabling	- Reverse INP3 polarity			
		-				
X[8	Heating current	- Heating current circuit	- Check heating current circuit			
	alarm (HCA)	interrupted, I < HE.R or I>	- If necessary, replace heater band			
		HE.R (dependent of				
		configuration)				
		- Heater band defective				

Name	Description	Reason	Possible remedial action
SSr	Heating current short circuit (SSR)	 Current flow in heating circuit with controller off SSR defective 	
Loop	Control loop alarm (LOOP)	 Input signal defective or not connected correctly Output not connected correctly 	 Check heating or cooling circuit Check sensor and replace it, if necessary Check controller and switching device
8987	Self-tuning heating alarm (ADAH)	- See Self-tuning heating error status	- see Self-tuning heating error status
3.R & R	Self-tuning heating alarm cooling (ADAC)	- See Self-tuning cooling error status	- see Self-tuning cooling error status
Lint	stored limit alarm 1	- adjusted limit value 1 exceeded	- check process
L 10.2	stored limit alarm 2	- adjusted limit value 2 exceeded	- check process
L 1.ñ.3	stored limit alarm 3	- adjusted limit value 3 exceeded	- check process
1 nF.1	time limit value mes- sage	- adjusted number of operating hours reached	- application-specific
1 nF.2	duty cycle message (digital ouputs)	 adjusted number of duty cycles reached 	- application-specific
8.5	Internal error in DP module	 self-test error internal communication interrupted 	Switch on the instrument againContact West service
d P. 1	No access by bus master	 bus error connector problem no bus connection 	Check cableCheck connectorCheck connections
d P.2	Faulty configuration	- Faulty DP configuration telegram	 Check DP configuration telegram in master
d P.3	Inadmissible parame- ter setting telegram sent	 Faulty DP parameter setting telegram 	- Check DP parameter setting telegram in master
d P.4	No data communica- tion	- Bus error - Address error - Master stopped	 Check cable connection Check address Check master setting

 (\mathbf{i})

Saved alarms (Err-LED is lit) can be acknowledged and deleted with the digital input di1/2/3, the F-key or the S-key. Configuration, see page 36: **ConF**/LUGI/Err.r

If an alarm is still valid that means the cause of the alarm is not removed so far (Err-LED blinks), then other saved alarms can not be acknowledged and deleted.

Error status	Description	Behaviour	
0	No error		
3	Faulty control ac- tion	Re-configure controller (inverse i direct)	
4	No response of process variable	The control loop is perhaps not closed: check sensor, connections and process	
5	Low reversal point	Increase (ADA.H) max. output limiting Y.Hi or decrease (ADA.C) min. output limiting Y.Lo	
6	Danger of excee- ded set-point (pa- rameter determined)	If necessary, increase (inverse) or reduce (direct) set-point	
7	Output step chan- ge too small (dy > 5%)	Increase (ADA.H) max. output limiting Y.Hi or reduce (ADA.C) min. output limiting Y.Lo	
8	Set-point reserve too small	Acknowledgment of this error message leads to switch-over to auto- matic mode. If self-tuning shall be continued, increase set-point (invers), reduce set-point (direct) or decrease set-point range $(\rightarrow P R r R / 5E \pm P / 5P.L \square$ and $5P.H \cdot$)	
9	Impulse tuning fai- led		

Self-tuning heating (RdRH) and cooling (RdRL) error status:

3.5 Self-tuning

For determination of optimum process parameters, self-tuning is possible. After starting by the operator, the controller makes an adaptation attempt, whereby the process characteristics are used to calculate the parameters for fast line-out to the set-point without overshoot.

The following parameters are optimized when self-tuning: Parameter set 1:

РЬ (と , (と d (と (Proportional band 1 (heating) in engineering units [e.g. °C] Integral time 1 (heating) in [s]→ only, unless set to DFF Derivative time 1 (heating) in [s]→ only, unless set to DFF Minimum cycle time 1 (heating) in [s]→ only, unless Adt0 was set to "no self-tuning" during configuration by means of BlueControl[®].
Pb2 L 12 L d2 L 2 set BlueControl [®] .	 Proportional band 2 (cooling) in engineering units [e.g. °C] Integral time 2 (cooling) in [s]→ only, unless set to □FF Derivative time 2 (cooling) in [s]→ only, unless set to □FF Minimum cycle time 2 (cooling) in [s] → only, unless Adt0 was to "no self-tuning" during configuration by means of
Doromotor so	t? analogous to peremotor set 1 (see page)

Parameter set 2: analogous to parameter set 1 (see page)

3.5.1 Preparation for self-tuning

Adjust the controller measuring range as control range limits. Set values $r \cap LL$ and $r \cap LH$ to the limits of subsequent control. (Configuration \rightarrow Controller \rightarrow lower and upper control range limits) $L \cap F \rightarrow L \cap Lr \rightarrow r \cap LL$ and $r \cap LH$

- Determine which parameter set shall be optimized.
 - The instantaneously effective parameter set is optimized. \rightarrow Activate the relevant parameter set (1 or 2).
- Determine which parameter set shall be optimized (see tables above).
- Select the self-tuning method see chapter 3.5.3

-Step attempt after start-up

Pulse attempt after start-up

Optimization at the set-point

3.5.2 Optimization after start-up or at the set-point

The two methods are optimization after start-up and at the set-point.

As control parameters are always optimal only for a limited process range, various methods can be selected dependent of requirements. If the process behaviour is very different after start-up and directly at the set-point, parameter sets 1 and 2 can be optimized using different methods. Switch-over between parameter sets dependent of process status is possible (see page).

Optimization after start-up: (see page 4)

Optimization after start-up requires a certain separation between process value and set-point. This separation enables the controller to determine the control parameters by evaluation of the process when lining out to the set-point.

This method optimizes the control loop from the start conditions to the set-point, whereby a wide control range is covered.

We recommend selecting optimization method "Step attempt after start-up" with $\xi = 0$ first. Unless this attempt is completed successfully, we recommend a "Pulse attempt after start-up".

Optimization at the set-point: (see page 18)

For optimizing at the set-point, the controller outputs a disturbance variable to the process. This is done by changing the output variable shortly. The process value changed by this pulse is evaluated. The detected process parameters are converted into control parameters and saved in the controller.

This procedure optimizes the control loop directly at the set-point. The advantage is in the small control deviation during optimization.

3.5.3 Selecting the method (EonF/Entr/tune) Selection criteria for the optimization method:

	Step attempt after start-up	Pulse attempt after start-up	Optimization at the set-point
1 L L L L L L L L L L L L L L L L L L L	sufficient set-point reserve is provided		sufficient set-point reserve is not provided
ε μη Ε = 1		sufficient set-point reserve is provided	sufficient set-point reserve is not provided
EunE = 2	always step attempt after start-up		

Sufficient set-point reserve:

inverse controller:(with process value < set-point-(10% of roLH -roLL) direct controller: (with process value > set-point + (10% of roLH -roLL))

3.5.4 Step attempt after start-up

Condition:

 $-k un \xi = 0$ and sufficient set-point reserve provided or $-k un \xi = 2$

The controller outputs 0% correcting variable or 4.1 o and waits, until the process is at rest (see start-conditions on page 8).

Subsequently, a correcting variable step change to 100% is output.

The controller attempts to calculate the optimum control parameters from the process response. If this is done successfully, the optimized parameters are taken over and used for line-out to the set-point.

With a 3-point controller, this is followed by "cooling".

After completing the 1st step as described, a correcting variable of -100% (100% cooling energy) is output from the set-point. After successfull determination of the "cooling parameters", line-out to the set-point is using the optimized parameters.

3.5.5 Pulse attempt after start-up

Condition: -k un E = 1 and sufficient set-point reserve provided.

The controller outputs 0% correcting variable or $4.1 \circ$ and waits, until the process is at rest (see start conditions page 8)

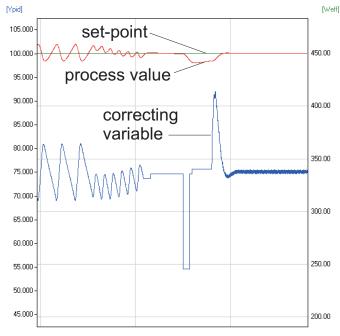
Subsequently, a short pulse of 100% is output (Y=100%) and reset.

The controller attempts to determine the optimum control parameters from the process response. If this is completed successfully, these optimized parameters are taken over and used for line-out to the set-point.

With a 3-point controller, this is followed by "cooling".

After completing the 1st step as described and line-out to the set-point, correcting variable "heating" remains unchanged and a cooling pulse (100% cooling energy) is output **additionally**. After successful determination of the "cooling parameters", the optimized parameters are used for line-out to the set-point.

3.5.6 Optimization at the set-point

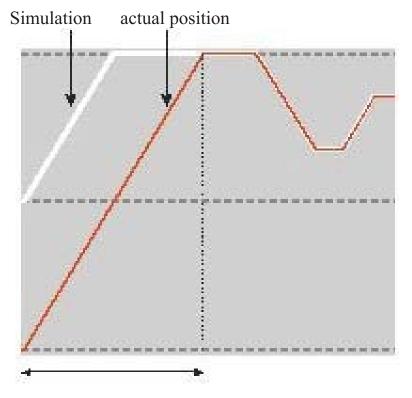

Conditions:

- A sufficient set-point reserve is **not** provided at self-tuning start (see page 17).
- **EunE** is 0 or 1
- With 5krk = 1 configured and detection of a process value oscillation by more than $\pm 0.5\%$ of $(r \cap LH - r \cap LL)$ by the controller, the control parameters are preset for process stabilization and the controller realizes an *optimization at the set-point* (see figure "Optimization at the set-point").
- when the step attempt after power-on has failed
- with active gradient function (*PRrR*/5EEP/r.5P ≠ OFF), the set-point gradient is started from the process value and there isn't a sufficient set-point reserve.

Optimization-at-the-set-point procedure:

The controller uses its instantaneous parameters for control to the set-point. In lined out condition, the controller makes a pulse attempt. This pulse reduces the correcting variable by max. 20% ①, to generate a slight process value undershoot. The changing process is analyzed and the parameters thus calculated are recorded in the controller. The optimized parameters are used for line-out to the set-point.

Optimization at the set-point


With a *3-point controller*, optimization for the "heating" or "cooling" parameters occurs dependent of the instantaneous condition.

These two optimizations must be started separately.

1 If the correcting variable is too low for reduction in lined out condition it is increased by max. 20%.

3.5.7 Optimization at the set-point for 3-point stepping controller

With 3-point stepping controllers, the pulse attempt can be made with or without position feedback. Unless feedback is provided, the controller calculates the motor actuator position internally by varying an integrator with the adjusted actuator travel time. For this reason, precise entry of the actuator travel time ($k \ k$), as time between stops is highly important. Due to position simulation, the controller knows whether an increased or reduced pulse must be output. After supply voltage switch-on, position simulation is at 50%. When the motor actuator was varied by the adjusted travel time in one go, internal calculation occurs, i.e. the position corresponds to the simulation:

Internal calculation **Ł**Ł

Internal calculation always occurs, when the actuator was varied by travel time $b \pm in one go$, independent of manual or automatic mode. When interrupting the variation, internal calculation is cancelled. Unless internal calculation occurred already after self-tuning start, it will occur automatically by closing the actuator once.

Unless the positioning limits were reached within 10 hours, a significant deviation between simulation and actual position may have occurred. In this case, the controller would realize minor internal calculation, i.e. the actuator would be closed by 20 %, and re-opened by 20 % subsequently. As a result, the controller knows that there is a 20% reserve for the attempt.

3.5.8 Self-tuning start

Start condition:

• For process evaluation, a stable condition is required. Therefore, the controller waits until the process has reached a stable condition after self-tuning start.

The rest condition is considered being reached, when the process value oscillation is smaller than $\pm 0.5\%$ of $(r \cap LH - r \cap LL)$.

• For self-tuning start after start-up, a 10% difference from (5P.L 0 ... 5P.H .) is required.

Self-tuning start can be blocked via BlueControl[®] (engineering tool) ($PL \circ c$).

- **5**krk = 0 Only manual start by pressing keys and \square simultaneously or via interface is possible.
- **5**krk = 1 Manual start by press keys \square and \blacktriangle simultaneously via interface and automatic start after power-on and detection of process oscillations.

Ada LED status	Signification	
blinks	Waiting, until process calms down	
lit	Self-tuning is running	
off	Self-tuning not activ or ended	

3.5.9 Self-tuning cancellation

By the operator:

Self-tuning can always be cancelled by the operator. For this, press - and \land key simultaneously.With controller switch-over to manual mode after self-tuning start, self-tuning is cancelled. When self-tuning is cancelled, the controller will continue operating using the old parameter values.

By the controller:

If the Err LED starts blinking whilst self-tuning is running, successful self-tuning is prevented due to the control conditions. In this case, self-tuning was cancelled by the controller. The controller continues operating with the old parameters in automatic mode. In manual mode it continues with the old controller output value.

3.5.10 Acknowledgement procedures in case of unsuccessful self-tuning

- Press keys and simultaneously: The controller continues controlling using the old parameters in automatic mode. The Err LED continues blinking, until the self-tuning error was acknowledged in the error list.
- 2. Press key \mathbb{E} (if configured):

The controller goes to manual mode. The Err LED continues blinking, until the self-tuning error was acknowleged in the error list.

3. Press key -:

Display of error list at extended operating level. After acknowledgement of the error message, the controller continues control in automatic mode using the old parameters.

Cancellation causes:

 \rightarrow page 15: "Error status self-tuning heating (RdR.H) and cooling (RdR.L)"

3.5.11 Examples for self-tuning attempts (controller inverse, heating or heating/cooling)

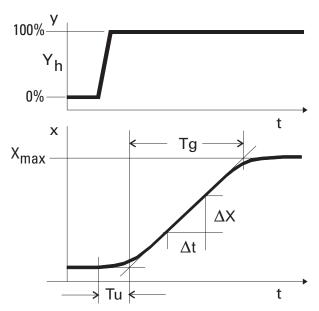

Start: heating power switched on Heating power Y is switched off (1). When the change of process value X was constant during one minute (2), the power is switched on (3). At the reversal point, the self-tuning attempt is finished and the new parameter are used for controlling to set-point W.

Start: heating power switched off The controller waits 1,5 minutes (1). Heating power Y is switched on (2). At the reversal point, the self-tuning attempt is finished and control to the set-point is using the new parameters.

Self-tuning at the set-point \triangle The process is controlled to the set-point. With the control deviation constant during a defined time (\bigcirc) (i.e. constant separation of process value and set-point), the controller outputs a reduced correcting variable pulse (max. 20%) (\bigcirc). After determination of the control parameters using the process characteristic (\bigcirc), control is started using the new parameters (\spadesuit).

Three-point controller 🖄

The parameter for heating and cooling are determined in two attempts. The heating power is switched on (1). Heating parameters $Pb l, k \cdot l, k d l$ and k l are determined at the reversal point. Control to the set-point occurs(2). With constant control deviation, the controller provides a cooling correcting variable pulse (3). After determining its cooling parameters Pb2, $k \cdot 2$, k d2 and k 2 (4) from the process characteristics, control operation is started using the new parameters (5).



During phase **3**, heating and cooling are done <u>simultaneously</u>!

3.6 Manual self-tuning

The optimization aid should be used with units on which the control parameters shall be set without self-tuning.

For this, the response of process variable x after a step change of correcting variable y can be used. Frequently, plotting the complete response curve (0 to 100%) is not possible, because the process must be kept within defined limits. Values T_g and x_{max} (step change from 0 to 100%) or Δt and Δx (partial step response) can be used to determine the maximum rate of increase v_{max} .

У	=	correcting variable		
Y_h	=	control range		
Tu	=	delay time (s)		
Tg	=	recovery time (s)		
X _{max}	=	maximum process value		
V _{max}	=	$\frac{Xmax}{Tg} = \frac{\Delta x}{\Delta t} \triangleq \text{max. rate of}$		
		increase of process value		

The control parameters can be determined from the values calculated for delay time T_u , maximum rate of increase v_{max} , control range X_h and characteristic K according to the **formulas** given below. Increase Xp, if line-out to the set-point oscillates.

Parameter		Control	Line-out of disturbances	Start-up behaviour
РЬ (higher increased damping		slower line-out	slower reduction of duty cycle
	lower reduced damping fa		faster line-out	faster reduction of duty cycle
ደፊ (۲ d ا higher reduced damping		faster response to disturbances	faster reduction of duty cycle
lower increased damping		increased damping	slower response to disturbances	slower reduction of duty cycle
L I higher increased damping		increased damping	slower line-out	slower reduction of duty cycle
	lower	reduced damping	faster line-out	faster reduction of duty cycle

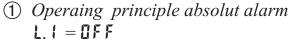
Parameter adjustment effects

	Formulas			
K = Vmax * Tu	controller behavior	Pb { [phy. units]	ŁՃ / [s]	と , 1 [s]
	PID	1,7 * K	2 * Tu	2 * Tu
With 2-point and 3-point controllers,	PD	0,5 * K	Tu	0FF
the cycle time must be adjusted to	PI	2,6 * K	0 F F	6 * Tu
	Р	K	0 F F	0,F,F
$1/2^2 \le 0.25 * Tu$	3-point-stepping	1,7 * K	Tu	2 * Tu

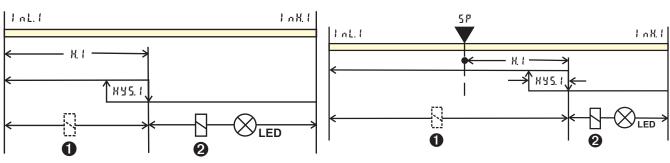
3.7 Second PID parameter set

The process characteristic is frequently affected by various factors such as process value, correcting variable and material differences.

To comply with these requirements, KS 90-1 can be switched over between two parameter sets.

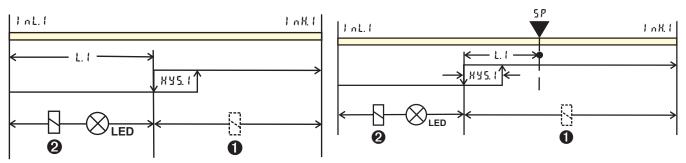

Parameter sets **PRr** and **PRr**. are provided for heating and cooling.

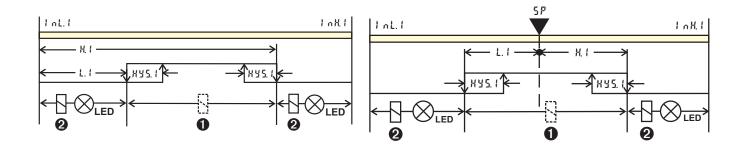
Dependent of configuration (LonF/LOL/P, d.2), switch-over to the second parameter set (LonF/LOL/P, d.2) is via one of digital inputs di1, di2, di3, key F or interface (OPTION).

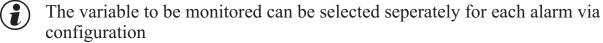


Self-tuning is always done using the active parameter set, i.e. the second parameter set must be active for optimizing.

3.8 Alarm handling




Operating principle relative alarm
 L. I = OFF


 $\mathsf{H}_{\mathsf{L}}\mathsf{I}=\mathsf{I}\mathsf{I}\mathsf{F}\mathsf{F}$

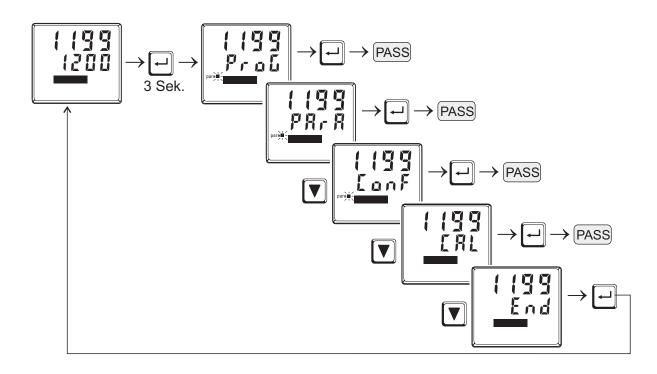
 $\mathsf{H}_{\mathsf{L}} \mathsf{I}_{\mathsf{L}} = \mathsf{I} \mathsf{I} \mathsf{F} \mathsf{F}_{\mathsf{L}}$

(1: normally closed ($L \cap F / \square \bot L \times / \square R \land L = I$) (see examples in the drawing) (2: normally open ($L \cap F / \square \bot L \times / \square R \land L = \square$) (inverted output relay action)

The following variables can be monitored:

- process value
- control deviation xw (process value set-point)
- control deviation xw + suppression after start-up or set-point change After switching on or set-point changing, the alarm output is suppressed, until the process value is within the limits for the first time. At the latest after expiration of time 10 ξ · · · · , the alarm is activated. (ξ · · · = integral time 1; parameter $\rightarrow \xi \cap \xi \cap$)

If $\mathbf{k} \cdot \mathbf{i}$ is switched off ($\mathbf{k} \cdot \mathbf{i} = \mathbf{i} \mathbf{i} \mathbf{F} \mathbf{F}$), this is interpreted as ∞ , i.e. the alarm is not activated, before the process value was within the limits once.


- Measured value INP1
- Measured value INP2
- Measured value INP3
- effective set-point Weff
- correcting variable y (controller output)
- Deviation from SP internal
- x1 x2
- control deviation xw + suppression after start-up or setpoint change without time limit.

- after switch-on or setpoint change, alarm output is suppressed, until the process value was within the limits once.

If measured value monitoring + alarm status storage is chosen ($E \cap F / L \cap / F \cap c.x = Z/4$), the alarm relay remains switched on until the alarm is resetted in the error list ($L \cap I \cap J = I$).

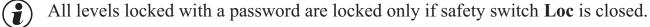
3.9 Operating structure

After supply voltage switch-on, the controller starts with the **operating levels**. The controller status is as before power off.

PRr - level: At **PRr** - level, the right decimal point of the bottom display line is *lit continuously*.

 (\mathbf{i})

At **Loop** - level, the right decimal point of bottom LonF - level: display line blinks.



When safety switch **Loc** is open, only the levels enabled by means of BlueControl (engineering tool) are visible and accessible by entry of the password adjusted by means of BlueControl (engineering

tool). Individual parameters accessible without password must be copied to the extended operating level.

Factory setting: Safety switch Loc closed: all levels accessible without restriction, password PR55 = 0FF.

Safety switch Loc	Password entered with BluePort®	Function disabled or en- abled with BluePort®	Access via the instrument front panel:
closed	OFF / password	disabled / enabled	enabled
open	OFF / password	disabled	disabled
open	OFF	enabled	enabled
open	Password	enabled	enabled after password entry

4 Configuration level

Eo	nF Co	nfigura	tion le	vel	P				T				1	
	self-tuning	ProL Programmer	n P. { Input 1	n P.2 Input 2	n.P.3 Input3	L in Limit value functions	011 k. { Output 1	011 k.2 Output 2	011 E.3 Output 3	0.012 L.Y Output 4	[] Ł.5 Output 5	D. L.E. Output 6	L ULI Digital inpu ts	ሀ ቲ ካ ィ Display, operation, interface
	SP.Fn		1.Enc	1.Fnc	1.Fnc	Fnc.l				0.E Y P			L	bRud
	[. <u>}</u> yp		SEYP	SEYP			<u>4.</u> (0.R c Ł	0.8 c E			5 <i>P.</i> 2	Rddr
	E.F.n.c		5.L in			Fnc.Z			<u>4.</u> (Y. (5 P.E	Prey
	E.d .F		Eorr	l n.F	Eorr	5 r.c.2		—	<u>4.2</u>	Y.2	-	_	Y.Z	4812
	ňÅn				l n.F	Fnc.3		put	Lint		output 1	put	<u> </u>	d P.R d
	<u>[.Rct</u>					<u>5 r c.3</u>		See output 1	1 102		out	See output 1	ňÅn	<u>bc.u</u> P
	FRIL					KE.RL	L P.R L	See	L 1.1.3	L 1.ñ.3	See	See	E.oFF	82
	r n 6.L					L P.R.L	XE.RL		L P.R.L				ñ.L o c	
	<u>r n 6.</u> X						<u> </u>		XE.RL					dР
	<u>[4 []</u>						P.E n d		HE.SE				P 10.2	
	<u>tun</u> E						FR . 1		<u>P.E.n.d</u>					disp
	Strt						FR .2		<u>FR.1</u>				d i.Fn	L.dti
							FR .3			FR2				
									FR .3	rn 1.3 Out.0				
									002.0 002.1					
									0.5 r c					
									and and the last					

Configuration survey Adjustment:

- The configuration can be adjusted by means of keys $\blacksquare \triangledown$.
- Transition to the next configuration is by pressing key \boxdot .
- After the last configuration of a group, don E is displayed and followed by automatic change to the next group

4.1 Configuration parameters

🗋 Entr

Name	Value range	Description	Default
SP.Fn		Basic configuration of setpoint processing	0
	0	set-point controller can be switched over to external set-point (->LULI/5P.E)	
	8	standard controller with external offset (5 P.E)	
	9	Programmer with external offset (SP.E)	
CF Ab		Calculation of the process value	0
	0	standard controller (process value = x1)	
	1	ratio controller (x1/x2)	
	2	difference (x1 - x2)	
	3	Maximum value of x1 and x2. It is controlled with the bigger value. At sensor failure it is controlled with the remaining actual value.	
	4	Minimum value of x1 and x2. It is controlled with the smaller value. At sensor failure it is controlled with the remaining actual value.	
	5	Mean value (x1, x2). With sensor error, controlling is continued with the remaining process value.	
	6	Switchover between x1 and x2 (->L 🛛 🕻 I / I . Ĺ h 🕻)	
	7	O ₂ function with constant sensor temperature	
	8	O ₂ function with measured sensor temperature	
E.F.n.c		Control behaviour (algorithm)	1
	0	on/off controller or signaller with one output	
	1	PID controller (2-point and continuous)	
	2	Δ / Y / Off, or 2-point controller with partial/full load switch-over	
	3	2 x PID (3-point and continuous)	
	4	3-point stepping controller	
	5	3-point stepping controller with position feedback Yp	
	6	continuous controller with integrated positioner	
E.d .F		Output action of the PID controller derivative action	0
	0	Derivative action acts only on the measured value.	
	1	Derivative action only acts on the control deviation (set-point is also differentiated)	
ñÅn		Manual operation permitted	0
	0	10	
	1	yes (→LŨĹI /ňЯn)	
E.Rcł		Method of controller operation	0
	0	inverse, e.g. heating The correcting variable increases with decreasing process value and decreases with increasing process value.	
	1	direct, e.g. cooling The correcting variable increases with increasing process value and decreases with decreasing process value.	
FRIL		Behaviour at sensor break	1
	0		1
	1	$\frac{\text{controller outputs switched off}}{v = Y2}$	
	2	y = 12 y = mean output. The maximum permissible output can be adjusted with parameter $2 n M$. To prevent determination of inadmissible va- lues, mean value formation is only if the control deviation is lower than parameter $1.2 n$.	
r n G.L	-19999999	X0 (start of control range)	-100
rn <u>L.X</u>	-19999999	X100 (end of control range)	1200

Name	Value range	Description	Default
EYEL		Characteristic for 2-point- and 3-point-controllers	0
	0	standard	
	3	with constant cycle	
LunE		Auto-tuning at start-up	0
	0	At start-up with step attempt, at set-point with impulse attempt	
	1	At start-up and at set-point with impulse attempt. Setting for fast controlled systems (e.g. hot runner control)	
	2	Always step attempt at start-up	
Strt		Start of auto-tuning	0
	0	Manual start of auto-tuning	
	1	Manual or automatic start of auto-tuning at power on or when oscillating is detected	
Adt0		Optimization of T1, T2 (only visible with BlueControl!)	0
	0	Automatic optimization	
	1	No optimization	

🗋 Prob

Name	Value Range	Description	Default
2.685		Timebase of Programmer	0
	0	hours [hh] : minutes [mm]	
	1	minutes [mm] : seconds [ss]	

🗋 1 n P. 1

Name	Value range	Description	Default
1.Fnc		INP1 function selection	7
	0	No function (following INP data are skipped)	
	1	Heating current input	
	2	External set-point 5P.E (switch-over ->L 061 / 5P.E)	
	3	Position feedback Yp	
	4	Second process value x2 (ratio, min, max, mean)	
	5	External positioning value Y.E (switch-over $\rightarrow L \square \square I / \exists E$)	
	6	No controller input (e.g. limit signalling instead)	
	7	Process value x1	
5.E Y P		Sensor type selection	1
	0	thermocouple type L (-100900°C), Fe-CuNi DIN	
	1	thermocouple type J (-1001200°C), Fe-CuNi	
	2	thermocouple type K (-1001350°C), NiCr-Ni	
	3	thermocouple type N (-1001300°C), Nicrosil-Nisil	
	4	thermocouple type S (01760°C), PtRh-Pt10%	
	5	thermocouple type R (01760°C), PtRh-Pt13%	
	6	thermocouple type T (-200400°C), Cu-CuNi	
	7	thermocouple type C (02315°C), W5%Re-W26%Re	
	8	thermocouple type D (02315°C), W3%Re-W25%Re	
	9	thermocouple type E (-1001000°C), NiCr-CuNi	
	10	thermocouple type B (0/1001820°C), PtRh-Pt6%	
	18	special thermocouple	

Name	Value range	Description	Default
	20	Pt100 (-200.0 100,0 °C)	
		Pt100 (-200.0 100,0 °C) (-200,0 150,0 °C with reduced lead resistance: measuring resistance + lead resistance $\leq 160 \Omega$)	
	21		
	21	Pt100 (-200.0 850,0 °C)	
		Pt1000 (-200.0 850.0 °C)	
	23	special 04500 Ohm (preset to KTY11-6)	
	24	special 0450 Ohm	
	30	020mA / 420mA	
	40	010V / 210V 1	
	41	special -2,5115 mV 1	
	42	special -251150 mV 1	
	50	potentiometer 0160 Ohm 1	
	51	potentiometer 0450 Ohm 1	
	52	potentiometer 01600 Ohm 1	
	53	potentiometer 04500 Ohm ①	
5.L in		Linearization (only at 5.1: $\Im P = 23$ (KTY 11-6), 24 (0450 Ω), 30 (020mA), 40 (010V), 41 (0100mV) and 42 (special -251150 mV))	0
	0	none	
	1	Linearization to specification. Creation of linearization table with BlueControl (engineering tool) possible. The characteristic for KTY 11-6 temperature sensors is preset.	
Earr		Measured value correction / scaling	0
	0	Without scaling	
	1	Offset correction ((controller offset adjustment is at ERL level))	
	2	2-point correction (calibration is at the controller [RL level)	
	3	Scaling (at PRr R level)	
l n.F	-19999999	Alternative value for error at INP1 If a value is adjusted, this value is used for display and calculation in case of error (e.g. FAIL). ∴ Before activating a substitute value, the effect in the control loop should be considered!	OFF
fAI1		Forcing INP1 (only visible with BlueControl!)	0
	0	No forcing	
	1	Forcing via serial interface	

• with current and voltage input signals, scaling is required (see chapter 5.3)

🗋 l n P.2

Name	Value range	Description	Default
1.Enc		Function selection of INP2	1
	0	no function (subsequent input data are skipped)	
	1	heating current input	
	2	external set-point (5 P.E)	
	3	Yp input	
	4	Second process value X2	
	5	External positioning value Y.E (switch-over \rightarrow L \square L \mid / Y.E)	
	6	no controller input (e.g. transmitter input instead)	
	7	Process value x1	

Name	Value range	Description	Default
5.E YP		Sensor type selection	30
	30	020mA/420mA	
	31	050mA AC 1	
	50	Potentiometer (0160 Ohm)	
	51	Potentiometer (0450 Ohm)	
	52	Potentiometer (01600 Ohm) 1	
	53	Potentiometer (04500 Ohm)	
Eorr		Measured value correction / scaling	0
	0	Without scaling	
	1	Offset correction (offset entry is at controller ERL level)	
	2	2-point correction (calibration is at controller ERL level)	
	3	Scaling (at PRr R level)	
l n.F	-19999999	Alternative value for error at INP2 If a value is adjusted, this value is used for display and calculation in case of error (e.g. FAIL). Before activating a substitute value, the effect in the control loop should be considered!	OFF
fAI2		Forcing INP2 (only visible with BlueControl!)	0
	0	No forcing	
	1	Forcing via serial interface	

• with current and voltage input signals, scaling is required (see chapter 5.3)

🗋 l n P.3

Name	Value range	Description	Default
1.Enc		Function selection of INP3	1
	0	no function (subsequent input data are skipped)	
	1	heating current input	
	2	External set-point SP.E (switch-over ->LOGI / SP.E)	
	3	Yp input	
	4	Second process value X2	
	5	External positioning value Y.E (switch-over $\rightarrow L \square \square \square / \square E$)	
	6	no controller input (e.g. transmitter input instead)	
	7	Process value x1	
5.L in		Linearization (only at 5.5 $\Im P = 30$ (020mA) and 40 (010V) adjustable)	0
	0	none	
	1	Linearization to specification. Creation of linearization table with BlueControl (engineering tool) possible. The characteristic for KTY 11-6 temperature sensors is preset.	
5.E YP		Sensor type selection	30
	0	thermocouple type L (-100900°C), Fe-CuNi DIN	
	1	thermocouple type J (-1001200°Ć), Fe-CuNi	
	2	thermocouple type K (-1001350°C), NiCr-Ni	
	3	thermocouple type N (-1001300°C), Nicrosil-Nisil	
	4	thermocouple type S (01760°C), PtRh-Pt10%	
	5	thermocouple type R (01760°C), PtRh-Pt13%	
	6	thermocouple type T (-200400°C), Cu-CuNi	
	7	thermocouple type C (02315°C), W5%Re-W26%Re	
	8	thermocouple type D (02315°C), W3%Re-W25%Re	
	9	thermocouple type E (-1001000°C), NiCr-CuNi	
	10	thermocouple type B (0/1001820°C), PtRh-Pt6%	
	18	special thermocouple	

Name	Value range		Default
	20	Pt100 (-200.0 100,0 °C) (-200,0 150,0 °C with reduced lead resistance: measuring resistance + lead resistance $\leq 160 \Omega$)	
		(-200,0 150,0°C with reduced lead resistance: measuring resis-	
	21	$\frac{\text{tance} + \text{lead resistance} \le 160 \text{ s}2}{100 \text{ s}2}$	
	21	Pt100 (-200.0 850,0 °C)	
	22	Pt1000 (-200.0 850.0 °C)	
	23	special 04500 Ohm (preset to KTY11-6)	
	24	special 0450 Ohm	
	30	020mA / 420mA 1	
	41	special -2,5115 mV 1	
	42	special -25115 0mV	
	50	potentiometer 0160 Ohm 1	
	51	potentiometer 0450 Ohm	
	52	potentiometer 01600 Ohm	
	53	potentiometer 04500 Ohm	
Corr		Measured value correction / scaling (only at $5.4 \text{ HP} = 23,24,30,41$ and 42 adjustable)	0
	0	Without scaling	
	1	Offset correction (offset entry is at controller [RL level)	
	2	2-point correction (calibration is at controller [RL level)	
	3	Scaling (at PRr R level)	
	4	Automatic calibration of position-feedback-potentiometer	
l n.F	-19999999	Alternative value for error at INP3	0FF
		If a value is adjusted, this value is used for display and calculation	
		in case of error (e.g. FAIL).	
		If a value is adjusted, this value is used for display and calculation in case of error (e.g. FAIL). Before activating a substitute value, the effect in the control loop should be considered!	
fAI3		Forcing INP3 (only visible with BlueControl!)	0
	0	No forcing	
	1	Forcing via serial interface	

• with current and voltage input signals, scaling is required (see chapter 5.3)

🗆 L (ñ

Name	Value range	Description	Default
Fnc. 1		Function of limit 1/2/3	1
Fnc.2	0	switched off	
Enc.3	1	measured value monitoring	
	2	Measured value monitoring + alarm latch. A latched limit value can be reset via error list or via a digital input, or by pressing key \bigcirc or $[F](->LULI/Err.r)$	
	3	signal change (change/minute)	
	4	signal change and storage (change/minute)	
Src.1		Source of Limit 1/2/3	1
Sric.2	0	process value	
Sec.3	1	control deviation xw (process value - set-point)	
	2	Control deviation Xw (=relative alarm) with suppression after start-up and setpoint change	
		After switch-on or setpoint change, alarm output is suppressed, until the process value was within the limits once. At the latest af- ter elapse of time 10 E (the alarm is activated. (E (E (i = inte- gral time 1; parameter $\rightarrow E \cap E \cap$) E (switched off (E (i = 0) is considered as ∞ , i.e. the alarm is not activated, until the process value was within the limits once.	

Name	Value range	Description	Default
	3	measured value INP1	
	4	measured value INP2	
	5	measured value INP3	
	6	effective setpoint Weff	
	7	correcting variable y (controller output)	
	8	control variable deviation xw (actual value - internal setpoint) = deviation alarm to internal setpoint	
	9	difference x1 - x2 (utilizable e.g. in combination with process va- lue function "mean value" for recognizing aged thermocouples	
	11	Control deviation (=relative alarm) with suppression after start-up and setpoint change without time limit After switch-on or setpoint change, alarm output is suppressed, until the process was within the limits once.	
XE.RL		Alarm heat current function (INP2)	0
	0	switched off	
	1	Overload short circuit monitoring	
	2	Break and short circuit monitoring	
l P.R.L		Monitoring of control loop interruption for heating	0
	0	switched off / inactive	
	1	Active. If E =0 LOOP alarm is inactive!	
		Active. If $\boldsymbol{k} \cdot \boldsymbol{i} = 0$ LOOP alarm is inactive! Loop alarm active. A loop break is recognized, with Y=100% if 2 x ti passes by without appropriate reaction of process value	
Hour	OFF999999	Operating hours (only visible with BlueControl [®] !)	OFF
Swit	OFF999999	Output switching cycles (only visible with BlueControl [®] !)	OFF

🗋 Öut.1 and Öut.2

Name	Value range	Description	Default
O.Rcł		Method of operation of output OUT1	0
	0	direct / normally open	
	1	inverse / normally closed	
¥. (Controller output Y1/Y2	1
9.2	0	not active	
	1	active	
Lint		Limit 1/2/3 signal	0
Lind	0	not active	
	1	active	
E P.R.E		Interruption alarm signal (LOOP)	0
	0	not active	
	1	active	
XE.RL		Heat current alarm signal	0
	0	not active	
	1	active	
XE.SE		Solid state relay (SSR) short circuit signal	0
	0	not active	
	1	active	
P.End		Message "Programm end"	0
	0	not active	
	1	active	

Name	Value range	Description	Default
F.R. (INP1/INP2/INP3 error signal	0
F.R. 1, 2	0	not active	
FR <u>.3</u> dP.Er	1	active	
dP.Er		PROFIBUS error	0
	0	not active	
	1	active: Profibus trouble, no communication with this instrument.	
Pr 6. (Programmer Control track 1/2/3/4	
P r 6.2	0	not active	
Pr 6.3	1	active	
Pr <u>G</u> Y EXEL			
ERLL		Operator call	
	0	not active	
	1	active	
fOut		Forcing OUT1 (only visible with BlueControl!)	0
	0	No forcing	
	1	Forcing via serial interface	

Configuration parameters Out.2 as Out.1 except for: Default 4.1 = 0 4.2 = 1

🗋 Öut.3 and Öut.4

Name	Value range	Description	Default
O.L YP		Signal type selection OUT3	0
	0	relay / logic (only visible with current/logic voltage)	
	1	020 mA continuous (only visible with current/logic/voltage)	
	2	4 20 mA continuous (only visible with current/logic/voltage)	
	3	010 V continuous (only visible with current/logic/voltage)	
	4	210 V continuous (only visible with current/logic/voltage)	
	5	transmitter supply (only visible without OPTION)	
0.Rcł		Method of operation of output OUT3 (only visible when O.TYP=0)	1
	0	direct / normally open	
	1	inverse / normally closed	
¥. (Controller output Y1/ Y2 (only visible when O.TYP=0)	0
¥.2	0	not active	
	1	active	
Linl		Limit 1/2/3 signal (only visible when O.TYP=0)	1
L 1.1.2	0	not active	
L <u>16.3</u> L P.RL	1	active	
1 P.R 1		Interruption alarm signal (LOOP) (only visible when O.TYP=0)	0
	0	not active	
	1	active	
XE.RL		Heating current alarm signal (only visible when O.TYP=0)	0
	0	not active	
	1	active	
XE.5E		Solid state relay (SSR) short circuit signal (only visible when O.TYP=0)	0
	0	not active	
	1	active	
P.End		Message "Programm end"	0
	0	not active	
	1	active	

Name	Value range	Description	Default
F.R (INP1/2/3 error (only visible when O.TYP=0)	0
5.0.83	0	not active	
<u>ER 13</u>	1	active	
PrG. 1		Programmer Control track 1/2/3/4	0
P r 5.2	0	not active	
Pr 6.3	1	active	
<u> </u>		Operator call	0
	0	not active	
	1	active	
0uŁ.0	-19999999	Scaling of the analog output for 0% (0/4mA or 0/2V, only visible when 0.TYP=15)	0
0ut.1	-19999999	Scaling of the analog output for 100% (20mA or 10V, only visible when O TVP=1 5)	100
0.5 r c		Signal source of the analog output OUT3 (only visible when O.TYP=15)	1
	0	not used	
	1	controller output y1 (continuous)	
	2	controller output y2 (continuous)	
	3	process value	
	4	effective set-point Weff	
	5	control deviation xw (process value - set-point)	
	6	measured value position feedback Yp	
	7	measured value INP1	
	8	measured value INP2	
	9	measured value INP3	L
fOut		Forcing OUT3 (only visible with BlueControl!)	0
	0	No forcing	
	1	Forcing via serial interface	

D 0ut.5/ 0ut.6

Configuration parameters as Out.1 except for: Default 4.1 = 0 4.2 = 0

Method of operation and usage of output Gut. 1 to Gut.5:

Is more than one signal chosen active as source, those signals are OR-linked.

105;

Name	Value range	Description	Default
L		Local / Remote switching (Remote: adjusting of all values by front keys is blocked)	0
	0	no function (switch-over via interface is possible)	
	1	always active	
	2	DI1 switches	
	3	DI2 switches (basic instrument or OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	F - key switches	

Name	Value range	Description			
5 <i>P.</i> 2		Switching to second setpoint 5 P.2	0		
	0	no function (switch-over via interface is possible)			
	2	DI1 switches			
	3	DI2 switches (only visible with OPTION)			
	4	DI3 switches (only visible with OPTION)			
	5	F - key switches			
5 P.E		Switching to external setpoint 5 P.E	0		
	0	no function (switch-over via interface is possible)			
	1	always active			
	2	DI1 switches			
	3	DI2 switches (only visible with OPTION)			
	4	DI3 switches (only visible with OPTION)			
	5	F - key switches			
72		Y/Y2 switching	0		
	0	no function (switch-over via interface is possible)			
	2	DI1 switches			
	3	DI2 switches (only visible with OPTION)			
	4	DI3 switches (only visible with OPTION)			
	5	F - key switches			
	6	S - key switches			
<u>4.</u> E		0			
	0	no function (switch-over via interface is possible)			
	1	always activated (manual station)			
	2	DI1 switches			
	3	DI2 switches (only visible with OPTION)			
	4	DI3 switches (only visible with OPTION)			
	5	F - key switches			
	6	S - key switches			
n8n		Automatic/manual switching	0		
	0	no function (switch-over via interface is possible)			
	1	always activated (manual station)			
	2	DI1 switches			
	3	DI2 switches (only visible with OPTION)			
	4	DI3 switches (only visible with OPTION)			
	5	F - key switches			
	6	🖳 - key switches			
E.oFF		Switching off the controller	0		
	0	no function (switch-over via interface is possible)			
	2	DI1 switches			
	3	DI2 switches (only visible with OPTION)			
	4	DI3 switches (only visible with OPTION)			
	5	F - key switches			
	6	S - key switches			
n.Loc		Blockage of hand function	0		
	0	no function (switch-over via interface is possible)			
	2	DI1 switches			
	3	DI2 switches (only visible with OPTION)			
	4	DI3 switches (only visible with OPTION)			
	5	F - key switches			

Name	Value range	Description	Default
Errr		Reset of all error list entries	0
	0	no function (switch-over via interface is possible)	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	F - key switches	
	6	S - key switches	
P . d.2		Switching of parameter set (Pb, ti, td)	0
	0	no function (switch-over via interface is possible)	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	F - key switches	
P.run		Programmer-Run/Stop (see Page xx)	0
	0	no function	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
P.oFF		Programmer off. Internal set-point is effective (see Page xx)	0
	0	no function	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
1.Eh6		Switching of the actual process value between Inp1 and X2	0
	0	no function (switch-over via interface is possible)	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	F - key switches	
d if n		Function of digital inputs (valid for all inputs)	0
	0	direct	
	1	inverse	
	2	toggle key function	
fDI1		Forcing di1/di2/di3 (only visible with BlueControl!)	0
fDI2	0	No forcing	
	1	Forcing via serial interface	
fDI3			

🗋 othr

Name	Value range	Description	Default
bRuď		Baudrate of the interface (only visible with OPTION)	2
	0	2400 Baud	
	1	4800 Baud	
	2	9600 Baud	
	3	19200 Baud	
Rddr	1247	Address on the interace (only visible with OPTION)	1

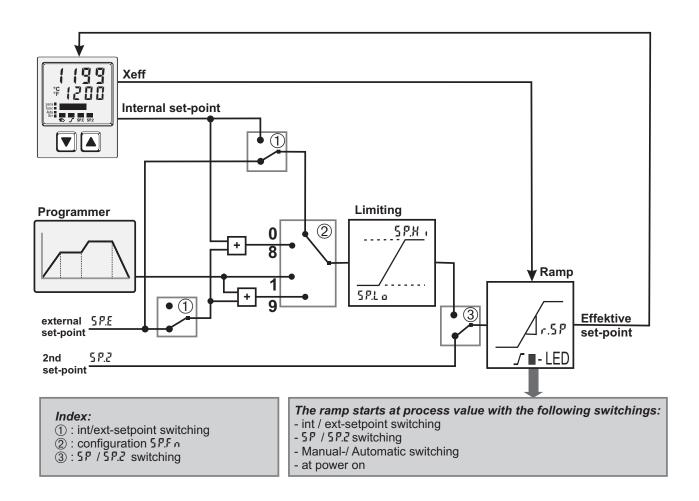
Name	Value range	Description	Default					
Prły		Data parity on the interface (only visible with OPTION)	1					
	0	no parity (2 stop bits)						
-	1	even parity						
-	2	odd parity						
-	3	no parity (1 stopbit)						
dP.Rd	0126	PROFIBUS address	126					
bc.uP		Back-up controller (see page)	120					
	0	No back-up controller						
-	1	Back-up controller						
-		Delete line, order was faulty						
dEL Y	0200	Delay of response signal [ms] (only visible with OPTION)	0					
Unit	0200	Unit	1					
	0	hout unit						
-	1	°C						
-	2	°F						
dP	2		0					
	0	Decimal point (max. number of digits behind the decimal point)	0					
-		no digit behind the decimal point						
-	1	1 digit behind the decimal point						
-	2	2 digits behind the decimal point						
	3	3 digits behind the decimal point	0					
LEd		Function allocation of status LEDs 1/2/3/4	0					
-	10	OUT1, OUT2, OUT3, OUT4						
-	11	Heating, alarm 1, alarm 2, alarm 3						
-	12	Heating, cooling, alarm 1, alarm 2						
	13	Cooling, heating, alarm 1, alarm 2						
	14	Bus error						
di SP	010	Display luminosity	5					
E.dEL	0200	Modem delay [ms] Additional delay time, before the received message is evaluated in the Modbus. This time is required, unless messages are transferred continuously during modem transmission.	0					
dP.Rd	0126	Profibus address	126					
bc.uP		Behaviour as backup controller	0					
-	0	No backup functionality						
-	1	With backup functionality						
FrEq		Switching 50 Hz / 60 Hz (only visible with BlueControl!)	0					
1129	0	50 Hz						
-	1	60 Hz						
MAst		Modbus master/slave (see page) (visible only with BlueControl ^{\mathbb{R}})	0					
1011150	0	No						
-	1	Yes						
CycL	0240	Master cycle (sec.) (see page) (visible only with BlueControl [®] !)	120					
	-327683276	Destination address (see page) (visible only with BlueControl [®] !)	1100					
AdrO								
AdrU AdrU	-327683276	Source address (see page) (visible only with BlueControl [®] !)	1100					
	-327683276 7100	Source address (see page) (visible only with BlueControl [®] !) Number of data (see page) (visible only with BlueControl [®] !)	1100					
AdrU Numb	1	Number of data (see page) (visible only with BlueControl [®] !)						
AdrU	1		1					

Name	Value range	Description	Default
IAda		Block auto tuning (only visible with BlueControl!)	0
	0	Released	
	1	Blocked	
IExo		Block extended operating level (only visible with BlueControl!)	0
	0	Released	
	1	Blocked	
ILat		Suppression error storage (visible only with BlueControl [®] !)	0
	0	No: error message remain in the error list until acknowledgement.	
	1	Yes alarms are deleted from the error list as soon as corrected	
PTmp		Block temporary programm changes	0
-	0	Released	
	1	Blocked	
pPre		Block Preset to end and reset	0
-	0	Released	
	1	Blocked	
pRun		Block Run / Stop	0
-	0	Released	
	1	Blocked	
pSwi		Block switch-over to controller	0
_	0	Released	
	1	Blocked	
pCom		Block general p rogram-parameter (b.lo, b.Hi, d.00)	0
	0	Released	
	1	Blocked	
Pass	OFF9999	Password (only visible with BlueControl!)	OFF
IPar		Block parameter level (only visible with BlueControl!)	0
	0	Released	
	1	Blocked	
ICnf		Block configuration level (only visible with BlueControl!)	0
	0	Released	
	1	Block	
ICal		Block calibration level (only visible with BlueControl!)	0
	0	Released	
	1	Blocked	
CDis3	-	Display 3 controller operating level (only visible with BlueControl!)	2
	0	No value / only text	
	1	Display of value	
	2	Output value as bargraph	
	3	Control deviation as bargraph	
	4	Process value as bargraph	1.2
TDis3	260	Display 3 display alternation time [s] (only visible with BlueControl!)	10
T.dis3	8 Zeichen	Text display 3	
T.InF1	8 Zeichen	Text Inf.1	
T.InF2	8 Zeichen	Text Inf.2	

Name	Value range	Description	Default
Lin		Linearization for inputs INP1 or INP3 Access to this table is always with selection special thermocouple for $1 \circ 1' \circ$	
UL INE		Unit of linearization table	0
	0	No unit	
	1	In Celsius [°C]	
	2	In Fahrenheit [°C]	
1 n. l	-999.0999999	Input value 1 The signal is in $[\mu V]$ or in $[\Omega]$ dependent of input type	1036
0 u. (0,0019999	Output value 1 Signal assigned to 1 n.	-49,94
1 n.2	-999.09999 9	Input value 2 The signal is in $[\mu V]$ or in $[\Omega]$ dependent of input type	1150
0 u.2	0,0019999	Output value 2 Signal assigned to 1 n.2	-38,94
:			
) n. 15	-999.09999 9	Input value 16 The signal is in $[\mu V]$ or in $[\Omega]$ dependent of input type	4470
8 u. 18	0,0019999		150,0

L (only visible with BlueControl[®]

Resetting the controller configuration to factory setting (Default) \rightarrow chapter (page)


P BlueControl - the engineering tool for the BluePort[®] controller series

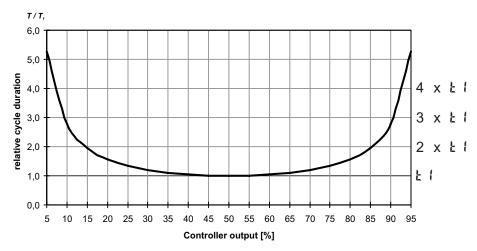
3 engineering tools with different functionality facilitating KS90-1 configuration and parameter setting are available (see chapter 10: *Accessory equipment with ordering information*).

In addition to configuration and parameter setting, the engineering tools are used for data acquisition and offer long-term storage and print functions. The engineering tools are connected to KS90-1 via the front-panel interface "BluePort[®]" by means of PC (Windows 95 / 98 / NT) and a PC adaptor. Description BlueControl: see chapter 9: *BlueControl* (page 72).

4.2 Set-point processing

The set-point processing structure is shown in the following picture:

Set-point gradient / ramp

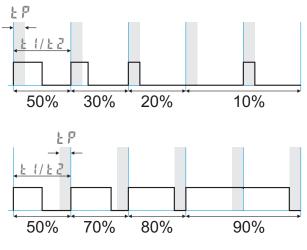

To prevent setpoint step changes, a maximum rate of change is adjustable for parameter \rightarrow setpoint $\rightarrow r.5P$. This gradient acts both in positive and negative direction.

With parameter r.5P set to $\Box FF$ as in the factory setting, the gradient is switched off and setpoint changes are made directly.

4.3 KS90-1 cooling functions

4.3.1 Standard ($[\ \exists \ L = \square]$)

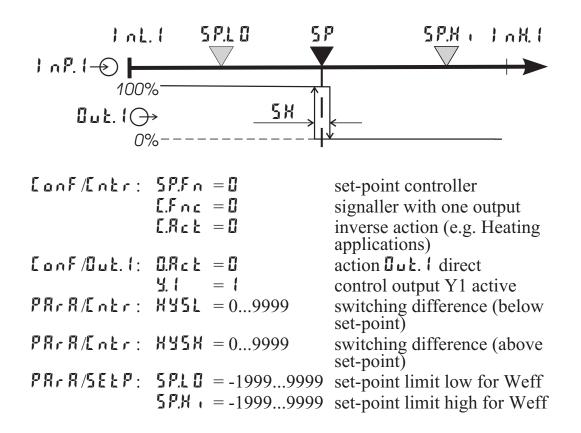
The adjusted cycle times \mathbf{k} 1 and $\mathbf{k} \mathbf{k}$ are valid for 50% or -50% correcting variable. With very small or very high values, the effective cycle time is extended to prevent unreasonably short on and off pulses. The shortest pulses result from $\frac{1}{4}$ x \mathbf{k} 1 or $\frac{1}{4}$ x \mathbf{k} 2. The characteristic curve is also called "bath tub curve"

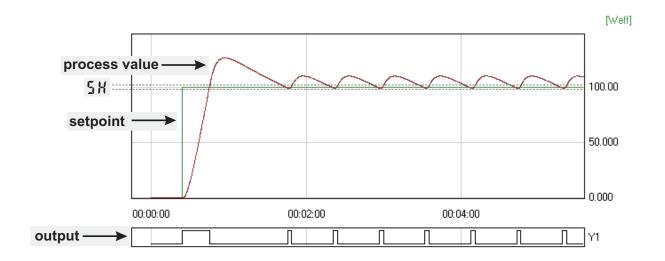


Parameters to be adjusted:L:min. cycle time 1 (heating) [s](PRrR/LnEr)L2: min. cycle time 2 (cooling) [s]

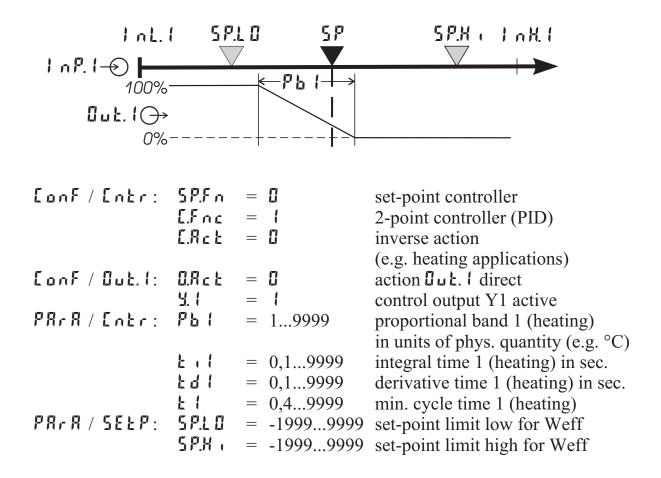
4.3.2 Heating and cooling with constant period ($\Sigma \Im \Sigma L = 3$)

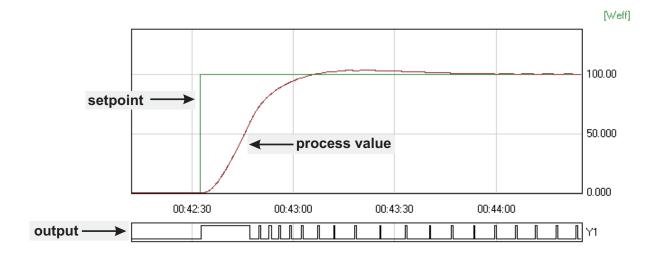
1 and $\pounds 2$ are met in the overall output range. To prevent unreasonably short pulses, parameter $\pounds P$ is used for adjusting the shortest pulse duration. With small correcting values which require a pulse shorter than the value adjusted in $\pounds P$, this pulse is suppressed. However, the controller stores the pulse and totalizes further pulses, until a pulse of duration $\pounds P$ can be output.


Parameters to be adjusted:	
(PRrR/Entr)	

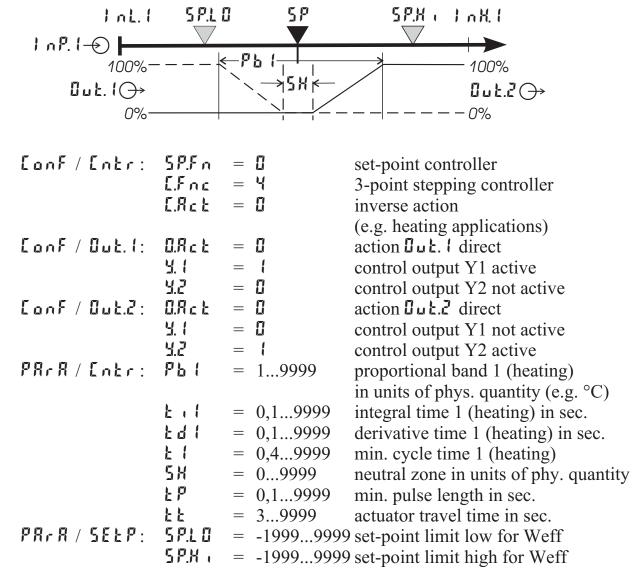

- **k** 1 : Min. cycle time 1 (heating) [s]
- **EZ** : min. cycle time 2 (cooling) [s]
- $\mathbf{k} \mathbf{P}$: min. pulse length [s]

4.4 Configuration examples

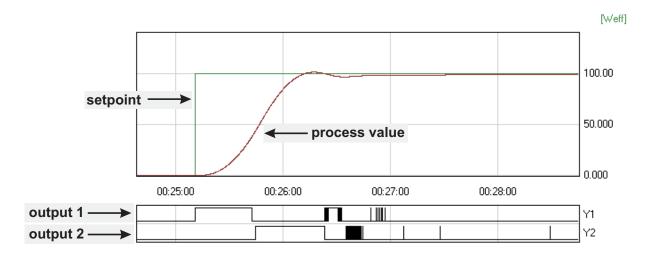

4.4.1 On-Off controller / Signaller (inverse)


For direct signaller action, the controller action must be changed (LonF / Lotr / LRct = 1)

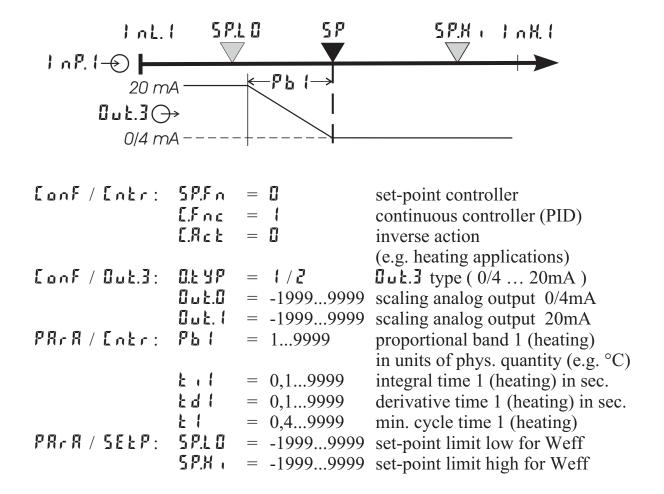
4.4.2 2-point controller (inverse)


For direct action, the controller action must be changed (LonF / Lotr / L.Rct = 1).

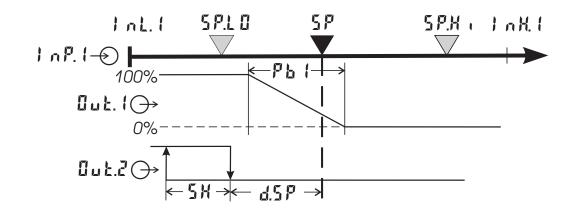
5 P.L 0 5*P* SP.K. InKI InL.I 1 nP.1-0 -Pb (P62-⋇ 100% ╞ 100%-**□**⊔Ł. 1)→ **0**⊔Ł.2⊖→ --0% 0%-_ _


[onf/[ntr:	5 <i>P.F.</i> n E.F.nc E.Rc Ł		set-point controller 3-point controller (2xPID) action inverse (e.g. heating applications)
ConF / Out.1:		= 🖸	action Duk . I direct
	<u> </u>	= [control output Y1 active
	Y.2	= 🖸	control output Y2 not active
Conf / Out.2:	0.8 c E	= U	action Buk.2 direct
	Y. (= D	control output Y1 not active
	Y.Z	= {	control output Y2 active
PRrR / Entr:	РЬ (= 199999	proportional band 1 (heating)
			in units of phys. quantity (e.g. °C)
	P62	= 199999	proportional band 2 (cooling)
			in units of phys. quantity (e.g. °C)
	E . 1	= 0,199999	integral time 1 (heating) in sec.
	5, 3	= 0,19999	derivative time 2 (cooling) in sec.
	ደ ዓ የ	= 0,19999	integral time 1 (heating) in sec.
	F 9 S	= 0,19999	derivative time 2 (cooling) in sec.
	£ {	= 0,49999	min. cycle time 1 (heating)
	£ 2	= 0,499999	min. cycle time 2 (cooling)
	5 X	= 099999	neutr. zone in units of phys.quantity
PRrR / SEEP:	5 P.L 0	= -19999999	
	5 P.X ,	= -19999999	set-point limit high for Weff

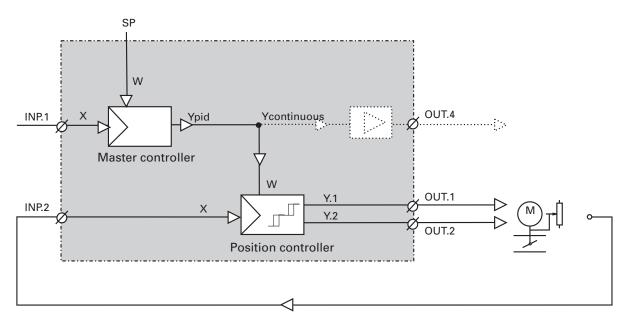
4.4.3 3-point controller (relay & relay)



4.4.4 3-point stepping controller (relay & relay)

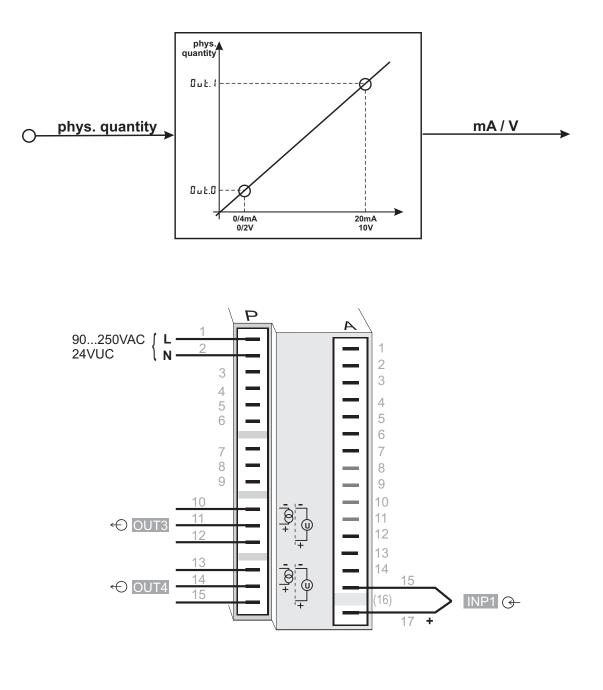

For direct action of the 3-point stepping controller, the controller output action must be changed (LonF / LnEr / LReE = 1).

4.4.5 Continuous controller (inverse)


- For direct action of the continuous controller, the controller action must be changed (LonF / LnEr / LRcE = 1).

[onf/[ntr:	SP.Fn E.Fnc	= 0 = 2	set-point controller Δ -Y-Off controller
	[.Rcł	= 🛙	inverse action
Г., Г./П.). (.	0.Rct	= []	(e.g. heating applications)
Conf / Out.1:			action But . direct
	<u>4. (</u>	= [control output Y1 active
	Y.2	= 🛙	control output Y2 not active
Conf / Out.2:	0.8 c Ł	= 🛙	action Bu E.2 direct
	¥. (= 🛙	control output Y1 not active
	¥.2	= {	control output Y2 active
PRrR / Entr:	РЬ (= 19999	proportional band 1 (heating)
			in units of phys. quantity (e.g. °C)
	と 1	= 0,199999	integral time 1 (heating) in sec.
	ደል (= 0,199999	derivative time 1 (heating) in sec.
	F 1	= 0,49999	min. cycle time 1 (heating)
	5 X	= 09999	switching difference
	d.5 P	= -19999999	trigg. point separation suppl. cont.
			$\Delta/Y/Off$ in units of phys.quantity
PRrR / SEEP:	5 P.L 0	= -19999999	set-point limit low for Weff
	5 P.X .	= -19999999	set-point limit high for Weff

4.4.6 Δ ${\rm Z}$ $\,$ Y - Off \,\, controller / 2-point controller with pre-contact



Basically, this controller function is a cascade. A slave controller with three-point stepping behaviour working with position feedback Yp as process value (INP2 or INP3) is added to a continuous controller.

11113) is added to	a comunu	ious controner.	
[onf/[ntr	SP.Fn	= 🛙	setpoint controller
	E.F.n.c	= 5	continuous controller with
			position controller
	E.R.c.E	= 🛛	inverse output action
	6.//66		(e.g. heating applications)
			(e.g. heating applications)
[onf/]nP.2:	1.Fnc	= 3	position feedback Yp
	5.E Y P	= 50	sensor e.g. potentiometer 0160 Ω
ConF / Out.1:	0.8 c Ł	= 🛙	direct output action DuE .
	¥. (= {	control output Y1 active
	9.2	= 🛙	control output Y2 not active
Conf / Out.2:	0.8 c E	= 0	1
		_	direct output action U u E .2
	¥. (= 0	control output Y1 not active
	¥.2	= {	control output Y2 active
PRrR / Entr:	Pb (= 0,199999	proportional band 1 (heating)
		,	in units of the physical quantity
			(e.g. °C)
	E i l	= 19999	integral time 1 (heating) in sec.
	Edi		derivative time 1 (heating) in sec.
	201		× •
)	min. cycle tim 1 (heating)
	5 X	= 099999	switching difference

4.4.8 Measured value output

Conf/Out.3/4: OLLYP Dut.3/4 0...20mA continuous 1 = 2 $\Box_{L} E J / \Psi 4...20$ mA continuous = 3 Dut.3/4 0...10V continuous = Ч But.3/4 2...10V continuous = scaling **Dut.3**/4 8.4u8 -1999...9999 = for 0/4mA or 0/2Vscaling **Dut.3**/4 But.1 -1999...9999 = for 20mA or 10V signal source for **Dut.3**/**Y** is 0.5rc =3 the process value

5 Parameter setting level

5.1 Parameter survey

PRc R]	Parame	ter sett	ing lev	el	1		
ビルト Control and self-tuning	PRr.2 2. set of parameters	5 E & P Set-point and process value	nP. (Input 1	n P.Z Input 2	1 n P.3 Input 3	ل ، بَ Limit value functions	End
P6 (Pb 12	5 <i>P.</i> L o	InL.1	l nL.2	InL.3	L. 1	
P62	P622	5 P.K +	Oul.1	S.J.u 0	Oul.3	H. (
E 1 (E 1 12	5.9.2	InKl	1 n H.2	1 n H.3	X Y 5. (
5,3	515	r.SP	8 u X. (0 u X.2	0 u X.3	dEL.1	
2d1	F9 15	-	2 F. 1	£ F.Z	£ F.3	L.2	
£95	F955		E.Ł c		E.Ł c	X.2	
£ {						XY 5.2	
22						dEL.2	
SX						L.3	
<u>X Y S.L</u>						Н.Э	
<u>X Y S.X</u>						XY 5.3	
<u>d.5 P</u>						dEL.3	
٤P						HE.R	
<u> </u>							
<u> </u>							
<u> </u>							
<u> </u>							
<u> </u>							
<u> </u>							
L.Yñ							
<u>5.820</u>							
<u>t.on</u>							
Łoff swa							
F X 2							
offs							

Adjustment:

EEAP

- The parameters can be adjusted by means of keys \blacksquare
- Transition to the next parameter is by pressing key \square
- After the last parameter of a group, donE is displayed, followed by automatic change to the next group.

Return to the beginning of a group is by pressing the 🖃 key for 3 sec.

If for 30 sec. no keypress is excecuted the controler returns to the process value and setpoint display (Time Out = 30 sec.)

5.2 Parameters

🗋 Entr

Name	Value range	Description	Default
Pb 1	19999 1	Proportional band 1 (heating) in phys. dimensions (e.g. °C)	100
P62	19999	Proportional band 2 (cooling) in phys. dimensions (e.g. °C)	100
E 1	0,19999	Integral action time 1 (heating) [s]	180
2,3	0,199999	Integral action time 2 (cooling) [s]	180
2 d l	0,199999	Derivative action time 1 (heating) [s]	180
F95	0,199999	Derivative action time 2 (cooling) [s]	180
<u> </u>	0,49999	Minimal cycle time 1 (heating) [s]. The minimum impulse is 1/4 x t1	10
77	0,499999	Minimal cycle time 2 (heating) [s]. The minimum impulse is 1/4 x t2	10
5 X	099999	Neutral zone or switching differential for on-off control [phys. dimensions]	2
XY5.L	099999	Switching difference Low signaller [engineering unit]	1
X Y 5.X	099999	Switching difference High signaller [engineering unit]	1
d.5.P	-19999999	Trigger point seperation for additional contact $\Delta/Y/Off$ [phys. dimensions]	100
Ł٩	0,199999	Minimum impulse [s]	0 F F
22	399999	Motor travel time [s]	60
Y.L o	-120120	Lower output limit [%]	0
<u>Y.X ,</u>	-120120	Upper output limit [%]	100
75	-100100	2. correcting variable	0
<u> </u>	-100100	Working point for the correcting variable [%]	0
<u> </u>	-100100	Limitation of the mean value Ym [%]	5
<u>L.Y.A</u>	099999	Max. deviation xw at the start of mean value calculation [phys. dimensions]	8
8.X 2 0	-19999999	Min. temperature for water cooling. Below set temperature no water cooling happens	0
Ł.on	0,199999	Impulse lenght for water cooling. Fixed for all values of controller output. The pause time is varied.	1
Ł.oFF	199999	Min. pause time for water cooling. The max. effective controller output results from $L_{0} / (L_{0} + L_{0} + L_{0} + L_{0}) = 100\%$	10
F.X 2 0	0,199999	Modification of the (non-linear) water cooling characteristic (see page 41)	1
oFFS	-120120	Zero offset	0

$\square PRr.2 (second parameterset \rightarrow 5.4)$

Name	Value range	Description			
Pb 12	19999	roportional band 1 (heating) in phys. dimensions (e.g. °C), 2. parameter set			
rbcc	19999	oportional band 2 (cooling) in phys. dimensions (e.g. °C), 2. parameter set			
F 155	0,19999	ntegral action time 2 (cooling) [s], 2. parameter set			
F 15	0,19999	Integral action time 1 (heating) [s], 2. parameter set	10		
F9 15	/	Derivative action time 1 (heating) [s], 2. parameter set			
7203	0,199999	Derivative action time 2 (cooling) [s], 2. parameter set	10		

🗆 582*P*

Name	Value range	ue range Description	
5 P.L 0	-19999999	Set-point limit low for Weff	0
5 P.X .	-19999999	Set-point limit high for Weff	900
5 P.2	-19999999	Set-point 2.	0
r.5P		Set-point gradient [/min]	0 F F
SP		Set-point (only visible with BlueControl!)	0

5P.L 0 and **5P.X**, should be within the limits of rob X and rob L see configuration \rightarrow Controller page

\square $i \cap P$.

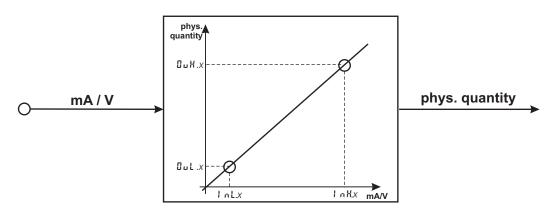
Name	Value range	Description	Default
InL.I	-19999999	Input value for the lower scaling point	0
Out.1	-19999999		
1	-19999999	Input value for the upper scaling point	20
0 u X. (-19999999	Displayed value for the lower scaling point	
E.F 1		Filter time constant [s]	
Etc. (0100 (°C) 32212 (°F)	External cold-junction reference temperature (external TC)	OFF

Name	Value range	Description	Default
l nL.2	-19999999	Input value for the lower scaling point	0
0uL.2		Displayed value for the lower scaling point	0
1 n X.2			
0 u X.2	-19999999		
£.F.Z		Filter time constant [s]	0,5

D 1 nP.3

Name	Value range	Value range Description	
InL.3	-19999999	Input value for the lower scaling point	0
Oul.3	-19999999	Displayed value for the lower scaling point	0
InK.3	-19999999	Input value for the upper scaling point	20
0 u X.3	-19999999 Displayed value for the upper scaling point		20
£.F 3	-19999999 Filter time constant [s]		0
Etc.3	0100 (°C) 32212 (°F	External cold-junction reference temperature (external TC)	OFF

Name	Value range	Description	Default
L. (-19999999	Lower limit 1	10
X. (-19999999	Upper limit 1	10
XY5.1	099999	Hysteresis limit 1	1
dEL.1	099999	Alarm delay from limit value 1	0
1.2	-19999999	Lower limit 2	8 F F
X.2	-19999999	Upper limit 2	0 F F
XY5.2	09999	Hysteresis limit 2	1
d£1.2	09999	09999 Alarm delay from limit value 2	
L.3	-19999999 Lower limit 3		0 F F
X.3	-19999999 Upper limit 3		-32000
XY5.3	099999	Hysteresis limit 3	1
d£1.3	099999		
XER	-19999999	Heat current limit [A]	50



Resetting the controller configuration to factory setting (Default)or resetting to the customer-specific default data set

 \rightarrow chapter (page)

5.3 Input scaling

When using current, voltage or resistance signals as input variables for 1 n P. (, 1 n P.2 or/and 1 n P.3 scaling of input and display values at parameter setting level is required. Specification of the input value for lower and higher scaling point is in the relevant electrical unit (mA/V/ Ω).

5.E YP	Input signal	l nL.x	ÖuL.x	l nH.x	🛛 🛛 H.x
30 (020mA)	0 20 mA	0	any	20	any
	4 20 mA	4	any	20	any
40 (010V)	0 10 V	0	any	10	any
. ,	2 10 V	2	any	10	any

5.3.1 Input I nP. I and I nP.3

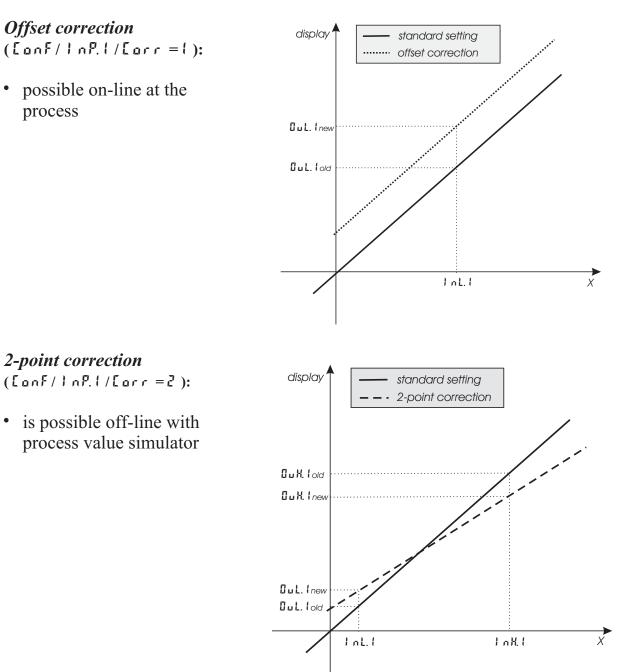
Parameters $l \cap L.x$, $\Box \cup L.x$, $l \cap H.x$ and $\Box \cup H.x$ are only visible if $\Box \cap F / l \cap P.x / \Box \cap r = 3$ is chosen.

In addition to these settings, 1 nL.x and 1 nH.x can be adjusted in the range $(0...20\text{mA} / 0...10\text{V} / \Omega)$ determined by selection of 5.LYP.

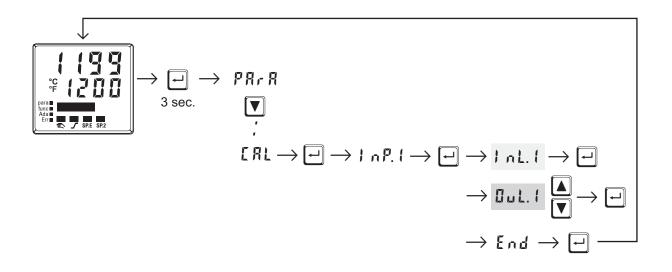
For using the predetermined scaling with thermocouple and resistance thermometer (Pt100), the settings for $l \cap L.x$ and $\Box \sqcup L.x$ and for $l \cap H.x$ and $\Box \sqcup H.x$ must have the same value.

Input scaling changes at calibration level (\rightarrow page 56) are displayed by input scaling at parameter setting level. After calibration reset ($\square F F$), the scaling parameters are reset to default.

5.3.2 Input | nP.2

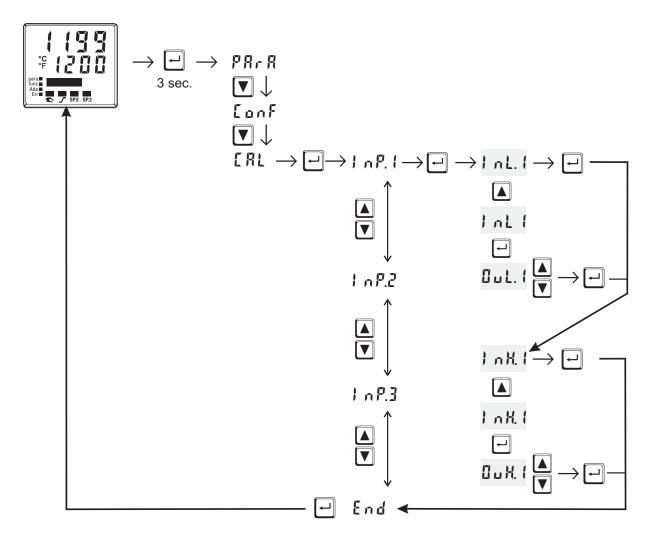

5.E Y P	Input signal	l nL2	0L.2	L n K.2	0 u X.2
30	0 20 mA	0	any	20	any
31	0 50 mA	0	any	50	any

In addition to these settings, $1 \cap L2$ and $1 \cap H2$ can be adjusted in the range $(0...20/50 \text{mA}/\Omega)$ determined by selection of $5 \downarrow 4 P$.


6 Calibration level

Measured value correction (LRL) is only visible if LorF / InP. I / Lorr = I or 2 is chosen.

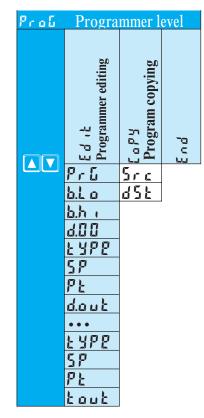
The measured value can be matched in the calibration menu ($\ensuremath{\mathsf{LRL}}$). Two methods are available:



Offset correction (EonF/InP.I/Eorr = I):

- InL.1: The input value of the scaling point is displayed. The operator must wait, until the process is at rest. Subsequently, the operator acknowledges the input value by pressing key .
 DuL.1: The display value of the scaling point is displayed.
- L. I: The display value of the scaling point is displayed.
 Before calibration, ☐uL. I is equal to InL. I.
 The operator can correct the display value by pressing keys ▲▼.
 Subsequently, he confirms the display value by pressing key ⊡.

2-point correction (LonF/InP.I/Lorr = 2):



- InL.1: The input value of the lower scaling point is displayed. The operator must adjust the lower input value by means of a process value simulator and confirm the input value by pressing key .
- Before calibration, Bul. 1 equals 1 nl. 1.
 The operator can correct the lower display value by pressing the keys. Subsequently, he confirms the display value by pressing key ...
- In H. I: The input value of the upper scaling point is displayed. . The operator must adjust the upper input value by means of the process value simulator and confirm the input value by pressing key .
- □ H. I: The display value of the upper scaling point is displayed. Before calibration □ u H. I equals I ∩ H. I. The operator can correct the upper display value by pressing keys ▲ ▼ Subsequently, he confirms the display value by pressing key ⊡.

The parameters (DuL. I, DuH. I) changed at EAL level can be reset by adjusting the parameters below the lowest adjustment value (DFF) by means of decrement key $\mathbf{\nabla}$.

7 Programmer level

7.1 Parameter survey

Setting:

- The parameters can be set by means of keys \blacksquare
- Transition to the next parameter is by pressing key .
- After the last parameter of a group, don E is displayed and an automatic transition the next group occurs

Return to the start of a group is by pressing key 🖃 during 3 sec.

Unless a key is pressed during 30 sec., the controller returns to process value-set-point display (Timeo Out = 30 sec.)

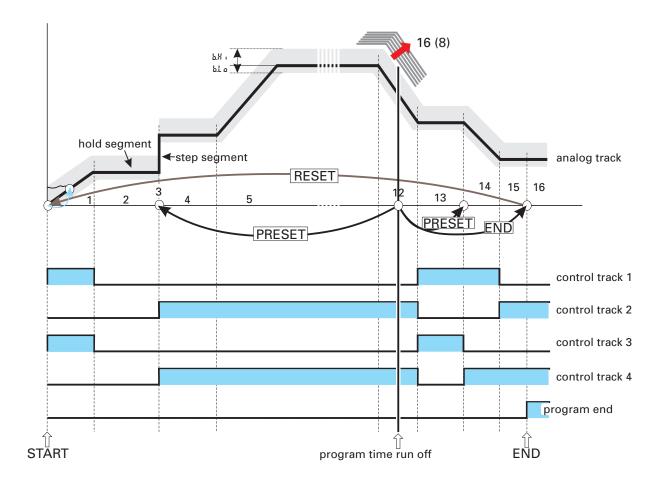
7.2 Parameters

🗋 Prob

Name	Value Range	Description Defau			
b.L o	09999	Bandwidth lower limit	Off		
Ь.Х т	09999	Bandwidth upper limit	Off		
d.0 0		Resetvalue of control track 1 4	0		
	0	track 1= 0; track 2= 0; track 3= 0; track 4= 0			
	1	track $1 = 1$; track $2 = 0$; track $3 = 0$; track $4 = 0$			
2		track 1= 0; track 2= 1; track 3= 0; track 4= 0			
	3	track 1= 1; track 2=1; track 3= 0; track 4=0			
	4	track 1= 0; track 2= 0; track 3= 1; track 4= 0			
	5	track 1= 1; track 2= 0; track 3= 1; track 4= 0			
	6	track 1= 0; track 2= 1; track 3= 1; track 4= 0			
	7	track 1= 1; track 2= 1; track 3= 1; track 4= 0			
	8	track 1= 0; track 2= 0; track 3= 0; track 4= 1			
	10	track 1= 1; track 2= 0; track 3= 0; track 4=1 track 1= 0; track 2= 1; track 3= 0; track 4= 1			
	10	track $1 = 0$, track $2 = 1$, track $3 = 0$, track $4 = 1$			
	12	track $1 = 1$, track $2 = 1$, track $3 = 0$, track $4 = 1$			
	13	track 1 = 0, $track 2 = 0$, $track 3 = 1$, $track 4 = 1$			
	14	track 1= 0; track 2= 0; track 3= 1; track 4= 1			
	15	track 1 = 1; track 2 = 1; track 3 = 1; track 4 = 1			
ŁYPE		segment type 1			
	0	time			
	1	gradient			
	2	hold			
3		step			
	4 time and wait				
	5	gradient and wait			
6 hold and wait 7 step and wait 8 end segment					
5 <i>P</i>	-19999999	end segment			
PE	09999	segment end set-point 1			
 d.U.u.t	099999	segment time/-gradient 1			
<u> </u>		control track 14 - 1 (see parameter d.DD)	0		
	1000 0000	segment type 2 (see segment type 1)	0		
5P	-19999999	segment end set-point 2			
PE	099999	segment time/-gradient 2			
<u>d.Üut</u>		control track 14 - 2 (see parameter d. DD)			
FAbe		segment type3 (see segment type 1)	0		
SP	-19999999	segment end set-point3			
PE	099999	segment time/-gradient 3			
d.0 u L		control track 14 - 3 (see parameter d. 🛛 🗘)			
ŁYPE		segment type 4 (see segment type 1)	0		
58	-19999999	segment end set-point 4			
PE	09999	segment time/-gradient 4			
d.Qut		control track 14 - 4 (see parameter d.DD)			
9.9 9 L		control track 14 - 4 (see parameter d.ü ü)			

Name	Value Range	Description	Default		
E A b E		segment type 3 (see segment type 1)	0		
58	-19999999	gment end set-point 5			
PŁ	099999	egment time/-gradient 5			
d.Ü u Ł		control track $14 - 5$ (see parameter $d.\square$ \square)			
FAbe		segment type 6 (see segment type 1)	0		
SP	-19999999	segment end set-point 6			
P٤	099999	segment time/-gradient 6			
d.Qut		control track $14 - 6$ (see parameter $d.\square$ \square)			
EAbe		segment type 7 (see segment type 1)	0		
SP	-19999999	segment end set-point 7			
PE	099999	gment time/-gradient 7			
d.Üut		ontrol track 14 - 7 (see parameter d.II I)			
FAbe		gment type 8 (see segment type 1)			
SP	-19999999	egment end set-point 8			
PE	099999	egment time/-gradient 8			
d.Ü u Ł		ontrol track 14 - 8 (see parameter d. 🛛 🖓)			
•	•	•	•		
•	•	•	•		
FAbe		segment type15 (see segment type 1)	0		
PE	099999	segment time/-gradient 15			
d.Ü u Ł		control track $14 - 15$ (see parameter $d.\square\square$)			
FAbe		segment type 16 (see segment type 1) 0			
58	-19999999	segment end set-point 16			
PŁ	099999	segment time/-gradient 16			
d.Ü u Ł		control track14 - 16 (see parameter $d.\square$)			

7.3 Programmer description


7.3.1 General

A survey of the most important features:

- Programs: 8 or 16 (dependent of order)
- Control outputs: 4
- Segments:16 per program
- Segment types: ramp (set-point and time)
 - ramp (set-point and gradient)
 - hold segment (holding time)
 - step segment (with alarm suppression)
 - end segment

All segment types can be combined with "Wait at the end and call operator"

- Time unit: configurable in hours:minutes or minutes:seconds
- Maximum segment duration:9999 hours = 1 year 51 days
- Maximum program duration:16 x 9999 hours = > 18 years
- Gradient:0,01°C/h (/min) to 9999°C/h (/min)
- Program name: 8 characters, adjustable via BlueControl software
- Bandwidth control: bandwidth high and low (b.Lo,b.Hi) limits defininable for each program

7.3.2 Programmer set-up:

The instrument is factory-configured as a program controller. The following settings must be checked:

• Set-point function

For using the controller as a programmer, select parameter SP.Fn = 1/9 in the ConF menu (\rightarrow page 23).

• Time base

The time base can be set to hours:minutes or minutes:seconds in the ConF menu; parameter t.bAS (\rightarrow page 24).

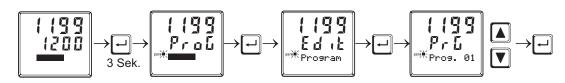
• Digital signals

For assigning a control output, program end or the operator call as a digital signal to one of the outputs, set parameter P.End, PrG1 ... PrG4 or CALL to 1 (\rightarrow page 30-33) for the relevant output OUT.1 ...OUT.6 in menu ConF (\rightarrow page 30-33).

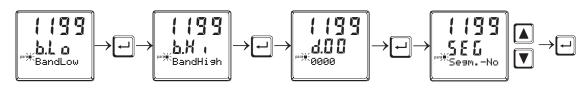
Programmer operation

The programmer can be started, stopped and reset via one of the digital inputs di1..3. Which input should be used for each function is determined by selecting parameters P.run and P.oFF = 2/3/4 in the ConF menu accordingly (\rightarrow page 35, 36).

To permit programmer operation via the front panel, parameter di.Fn (ConF menu; Logi \rightarrow page 36) must be configured for key function.


Further settings, which affect the programmer display layout and operation are only possible using the BlueControl software (see picture below and page 37/38).

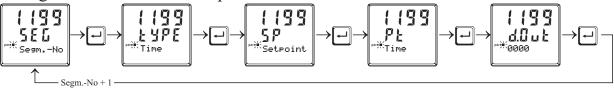
Name	Description	Value	on	Range	
othr	Other				
	own on on a con-				
pTmp	access temporary program changes	0: enabled			
pPre	access preset to end and reset	0: enabled			
pRun	access run / stop	0: enabled			
pSwi	access switch controller	0: enabled			
pCom	access common program parameters	0: enabled			
		11		THIN	
IPrg	access programmer level	1: blocked			
CDis3	display 3 controller operation	2: bargraf of actuating variable			
TDis3	display 3 time cycle [s]	10		260	
PDis3	display 3 programmer operation	0: segmnr., segmtype, progrem-time			
T die3	tevt displau 3				


Cutout from the BlueControl Konfiguration "othr"

Programmer parameter setting

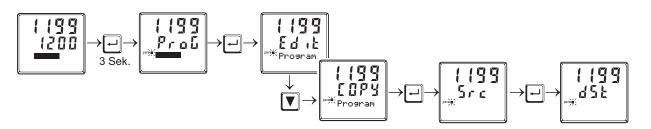
8(16) programmers with 16 segments each are available to the user. The relevant parameters must be determined in menu $\Pr \mathfrak{o} \mathfrak{L}$. (\rightarrow page 57). The procedure for editing a program is shown below.

Select the program you want to edit by means of keys $\blacksquare \lor$ and confirm it with \boxdot . Start by setting the bandwidth high and low (**b.L** \circ ; **b.H** \cdot) limits and the control output reset value (**d.D** \square) for the selected program. The bandwidth is valid for all segments (\rightarrow see chapter 7.3.6).



Configuration parameter pCom (\rightarrow page 38) can be used for display suppression of bandwidth parameters and control output reset value, which, however, remain valid.

Select the segment number (5E5; Segm.-No) for the segment which is to be edited.


Now, enter segment type (\rightarrow page chapter), segment end set-point, segment time/gradient and control output.

After confirming parameter d.Out with key 🖃 , select the following segment.

Copying a program

The procedure for copying a program is shown below.

When confirming function COPY with key \square , the program which shall be copied must be selected (5rc). Subsequently, the target program (d5t) must be adjusted. Press key \square to start copying.

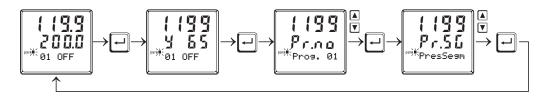
7.3.3 Operation

Programmer operation (run/stop, preset und reset) is via front panel, digital inputs or interface (BlueControl, superordinate visualization, ...).

Front panel operation

For programmer operation via the front panel keys, the digital input function (d $F n \rightarrow page 36$) must be set to key operation.

Function key F can be used for switch-over to programmer \frown or controller \frown . If programmer was selected, the func LED is lit.


Now, the programmer can be started or stopped via auto/manual key \mathbb{R} (run LED = ON or OFF). By pressing auto/manual key \mathbb{R} during stop condition, the programmer jumps to the end segment. Press the key again to switch off the programmer (reset).

Operation via digital inputs

Functions start/stop and reset can be activated also via digital inputs. For this, parameters P.run and P.oFF must be set for digital inputs (\rightarrow page 35, 36) at CONF level LOGI (r page 35, 36).

Program/segment selection

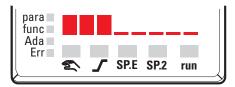
<u>Prerequisite</u>: Programmer is in the reset or stop condition. How to select a defined program (Pr.no) followed by a segment (Pr.5L) is shown below. When starting the programmer now, program operation starts at the beginning of the selected segment in the selected program.

Preset

The preset function is activated via segment selection.

To permit preset in a running program, switch the programmer to stop, select the target segment as described in the above section and switch the programmer to run.

7.3.4 Programmer display

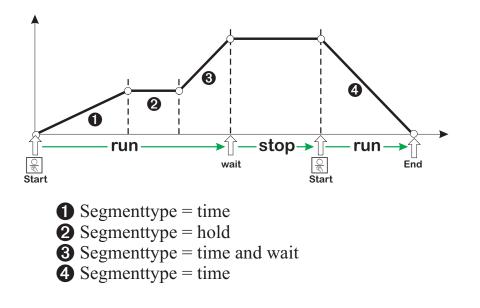


Programmer is in reset and the internal controller set-point is effective. Segment or program number and $\square FF$ are displayed (configurable with BlueControl: Configuration \rightarrow Other \rightarrow PDis3).

Programmer running (run LED is lit). Segment or program number, segment type (/ rising; \ falling; - hold) and program/segment rest time or runtime are displayed (configurable with BlueControl: Configuration \rightarrow Other \rightarrow PDis3).

Program end was reached. The set-point defined in the last segment is effective. Segment or program number and $E \cap d$ are displayed (configurable with BlueControl: Configuration \rightarrow Other \rightarrow PDis3).

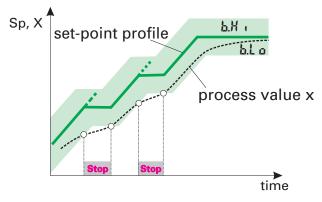
Function key F was used to switch over to the controller. The instantaneously effective correcting variable is displayed.


7.3.5 Segment type

Ramp- seg- ment (time)	Sp→ → Pt→	With a ramp segment (time), the set-point runs linearly from the start value (end of previous segment) towards the target set-point (Sp) of the relevant segment during time Pt (segment duration).
Ramp- seg- ment (gradient)	Sp->>- Pt	With a ramp segment (gradient), the set-point runs linearly from the start value (end value of previous segment) towards the target value (Sp) of the relevant segment. The gradient is determined by parameter Pt.
Hold segment	<− Pt→	With a hold segment, the end set-point of the previous segment is output constantly during a defined time which is determined by parameter Pt.
Step segment	Sp →	With a step segment, the program set-point goes directly to the value specified in parameter Sp. With configured control deviation alarms, the alarm is suppressed within band monitoring.
End segment	End	The last segment in a program is the end segment. When rea- ching the end segment, output of the setpoint output last is con- tinued.

Waiting and operator call

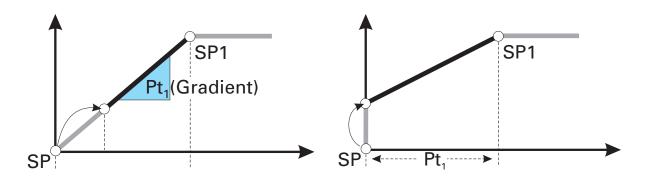
All segment types except end segment can be combined with "Wait at the end and operator call".


If a segment with combination "wait" was configured, the programmer goes to stop mode at the segment end (run LED is off). Now, the programmer can be restarted by pressing the start/stop key (>3s), via interface or digital input.

7.3.6 Bandwidth monitoring

Bandwidth monitoring is valid for all program segments. An individual bandwidth can be determined for each program.

When leaving the bandwidth (b.Lo = low limit; b.Hi = high limit), the programmer is stopped (run LED flashes). The program continues running when the process value is within the predefined bandwidth again.



With segment type Step and bandwidth monitoring activated, the control deviation alarm is suppressed, until the process value is in the band again.

) If band alarm signalling as a relay output is required, a control deviation alarm with the same limits as the band limits must be configured.

7.3.7 Search run at programmer start

The programmer starts the first segment at the actual process value (search run). This may change the effective runtime of the first segment.

7.3.8 Behaviour after mains recovery or sensor error

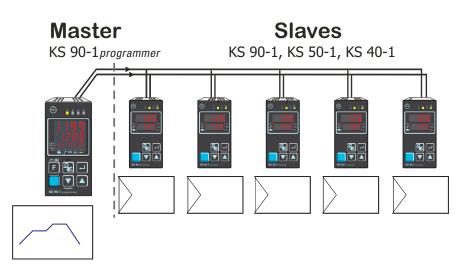
Mains recovery

After power recovery, the last program set-points and the time elapsed so far are not available any more. Therefore, the programmer is reset in this case. The controller uses the internal set-points and waits for further control commands (the run LED blinks).

Sensor error

With a sensor error, the programmer goes to stop condition (the run LED blinks). After removal of the sensor error, the programmer continues running.

8 Special functions


8.1 KS90-1 as Modbus master

This function is only selectable with BlueControl (engineering tool)!

Additions othr (only visible with BlueControl!)

Name	Value range	Description	Default
MASt		Controller is used as Modbus master	0
	0	Slave	
	1	Master	
Cycl	0200	Cycle time [ms] for the Modbus master to transmit its data to the bus.	60
AdrO	165535	Target address to which the with AdrU specified data is given out on the bus.	1
AdrU	165535	Modbus address of the data that Modbus master gives to the bus.	1
Numb	0100	Number of data that should be transmitted by the Modbus master.	0

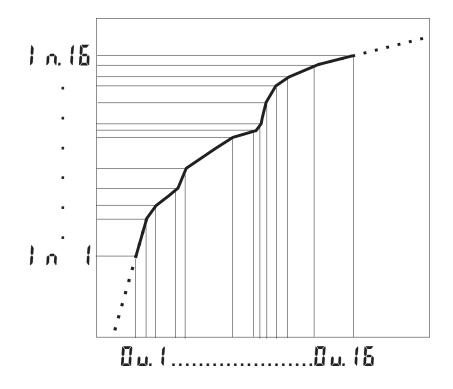
The KS90-1 can be used as Modbus master (forf / dthr / MASt = 1). The Modbus master sends its data to all slaves (Broadcast message, controller adress 0). It transmits its data (modbus adress AdrU) cyclic with the cycle time Cycl to the bus. The slave controller receives the data transmitted by the masters and allocates it to the modbus target adress AdrO. If more than one data should be transmitted by the master controller (Numb > 1), the modbus adress AdrU indicates the start adress of the data that should be transmitted and AdrO indicates the first target adress where the received data should be stored. The following data will be stored at the logically following modbus target adresses. With this it is possible e.g. to specify the process value of the master controller as set-point for the slave controllers.

Example for transfering the programmer set-point

8.2 Back-up controller (PROFIBUS)

Back-up operation: calculation of the control outputs is in the master. The controller is used for process value measurement, correcting variable output and for display.

With master or communication failure, control is taken over independently and bumplessly by the controller.


8.3 Linearization

Linearization for inputs INP1 or INP3

Access to table "L in" is always with selection of sensor type S.TYP = 18: special thermocouple in INP1 or INP3, or with selection of linearization 5.1 in 1: special linearization.

Dependent of input type, the input signals are specified in μV or in Ohm dependent of input type.

With up to 16 segment points, non-linear signals can be simulated or linearized. Every segment point comprises an input $(I \cap I \dots I \cap I_{\mathbf{5}})$ and an output $(I \cup I \dots I_{\mathbf{5}})$. These segment points are interconnected automatically by means of straight lines. The straight line between the first two segments is extended downwards and the straight line between the two largest segments is extended upwards. I.e. a defined output value is also provided for each input value. When switching an $I \cap x$ value to IFF, all other ones are switched off. Condition for these configuration parameters is an ascending order. $I \cap I < I \cap Z < ... < I \cap IE$ and $I \cup I < I \cup Z \dots < I \cup IE$.

8.4 Loop alarm

The loop alarm monitors the control loop for interruption

(not with three-point stepping controller and not with signallers.)

With parameter LF. AL switched to 1 (= loop alarm active), an interruption of the control loop is detected, unless the process value reacts accordingly with Y=100% after elapse of 2xTi.

The loop alarm shows that the control loop is interrupted. You should check heating or cooling circuit, sensor, controller and motor actuator.

During self-tuning, the control loop is not monitored (loop alarm is not active).

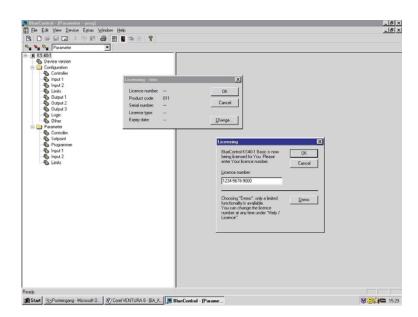
8.5 Heating current input / heating current alarm

The heating current alarm monitors the heating current.

In addition to short circuit monitoring, checking either for overload (current > heating current limit value) or for interruption (current < heating current limit value) is done.

Each of the analog inputs can be used as measurement input.

If electrical heating is concerned, INP2 which is always provided can be configured for measuring range 0...50mA AC and connected directly using a heating current transformer.


With $\xi \ell < 400 \text{ ms or } \xi P < 200 \text{ ms}$ (effective time!), heating current monitoring is ineffective.

9 BlueControl

BlueControl is the projection environment for the BluePort[®] controller series of PMA. The following 3 versions with graded functionality are available:

FUNCTIONALITY	MINI	BASIC	EXPERT
parameter and configuration setting	yes	yes	yes
controller and loop simulation	yes	yes	yes
download: trnsfer of an engineering to the controller	yes	yes	yes
online mode/ visualization	SIM only	yes	yes
defining an application specific linearization	yes	yes	yes
configuration in the extended operating level	yes	yes	yes
upload: reading an engineering from the controller	SIM only	yes	yes
basic diagnostic functions	no	no	yes
saving data file and engineering	no	yes	yes
printer function	no	yes	yes
online documentation, help	yes	yes	yes
implementation of measurement value correction	yes	yes	yes
data acquisition and trend display	SIM only	yes	yes
wizard function	yes	yes	yes
extended simulation	no	no	yes
program editor (KS 90-1prog only)	no	no	yes

The mini version is - free of charge - at your disposal as download at PMA homepage *www.pma-online.de* or on the PMA-CD (please ask for).

At the end of the installation the licence number has to be stated or DEMO mode must be chosen. At DEMO mode the licence number can be stated subsequently under $Help \rightarrow Licence \rightarrow Change$.

10 Versions

K S 9 - 1		-			- 0	0
KS 90-1 Format 48 x 96 0						
KS 92-1 Format 96 x 96 2						
Anschluß über Flacksteckmesser						
Anschluß über Schraubklemmen 1						
90250V AC, 4 Relais	0					
24VAC / 1830VDC, 4 Relais	1					
90250V AC, 3 Relais + mA/V/Logik	2					
24VAC / 1830VDC, 3 Relais + mA/V/Logik	3					
90250V AC, 2 Relais + 2 x mA/V/Logik	4					
24VAC / 1830VDC, 2 Relais + 2xmA/V/Logik	5					
keine Option		0				
$RS422/485 + U_T + di2, di3 + OUT5, OUT6$		1				
$PROFIBUS-DP + U_T + di2/di3 + OUT5/OUT6$		2				
INP1 und INP2		(0			
INP1, INP2 und INP3			1			
Programmregler mit 8 Programmen			1			
Programmregler mit 16 Programmen			2			
Standardkonfiguration				0		
Konfiguration nach Angabe				9		
keine Bedienungsanleitung				0		
Bedienungsanleitung Deutsch				D		
Bedienungsanleitung Englisch				Ε		
Bedienungsanleitung Französisch				F		
Standard					0	
cULus-zertifiziert (nur mit Schraubklemmen)					U	
Kundenspezifisches Gerät / Front)	(X

Accessories delivered with the unit

Operating manual (if selected by the ordering code)

- 2 fixing clamps
- operating note in 12 languages

Accessory equipment with ordering information

Description			Order no.
Heating current transformer 50A AC			9404-407-50001
PC-adaptor for the front-panel interface			9407-998-00001
Standard rail adaptor			9407-998-00061
Operating manual	German		9499-040-62918
Operating manual	English		9499-040-62911
Operating manual	French		9499-040-62932
Interface description Modbus RTU	German		9499-040-63718
Interface description Modbus RTU	English		9499-040-63711
BlueControl (engineering tool)	Mini	Download	www.pma-online.de
BlueControl (engineering tool)	Basic		9407-999-11001
BlueControl (engineering tool)	Expert		9407-999-11011

11 Technical data

INPUTS

PROCESS VALUE INPUT INP1

Resolution: > 14 bits Decimal point: 0 to 3 digits behind the decimal point adjustable 0,000...9999 s Dig. input filter: Scanning cycle: 100 ms Measured value 2-point or offset correction correction:

Thermocouples

 \rightarrow Table 1 (page 77)

Internal and external temperature compensation

Input resistance:	$\geq 1 \mathrm{M}\Omega$
Effect of source resistance:	$1 \mu V/\Omega$

Internal temperature compensation

Maximal additional error: $\pm 0,5 \, \text{K}$

Sensor break monitoring

Sensor current: $\leq 1 \mu A$ Configurable output action

Thermocouple to specification

Measuring range -25...75mV in conjunction with the linearization can be used for connecting thermocouples which are not included in Table 1.

Resistance thermometer

 \rightarrow Table 2 (page 77)

Connection:	3-wire
Lead resistance:	max. 30 Ohm
Input circuit monitor:	break and short circuit

Special measuring range

BlueControl (engineering tool) can be used to match the input to sensor KTY 11-6 (characteristic is stored in the controller).

Physical measuring range:	04500 Ohm
Linearization segments	16

Current and voltage signals

 \rightarrow Table 3 (page 77)

Span start, end of span: anywhere within measuring

	range
Scaling:	selectable -19999999
Linearization:	16 segments, adaptable
	with BlueControl
Decimal point:	adjustable
Input circuit monitor:	12,5% below span start
	(2mA, 1V)

SUPPLEMENTARY INPUT INP2

Resolution:	> 14 bits
Scanning cycle:	100 ms

Heating current measurement

via current transformer (→ Accessory equipment)

Measuring range: 0...50mA AC adjustable -1999...0,000...9999 A Scaling:

Current measuring range

Technical data as for INP1

Potentiometer

 \rightarrow Table 2 (page 77)

SUPPLEMENTARY INPUT INP3 (OPTION)

Resolution: > 14 bits 100 ms Scanning cycle:

Technical data as for INP1 except 10V range.

CONTROL INPUTS DI1, DI2

Configurable as switch or push-button! Connection of a potential-free contact suitable for switching "dry" circuits.

Switched voltage:	5 V
Current:	100 μA

CONTROL INPUTS DI2, DI3 (OPTION)

The functions of control input di2 on the analog card and of di2 on the options card are logically **OR**ed. Configurable as direct or inverse switches or kevs.

Optocoupler input for active triggering.

Nominal voltage Current sink (IEC 1131 type 1)	24 V DC external
Logic "0"	-35 V 1530 V
Current requirement	approx 5 mA

TRANSMITTER SUPPLY U_{T} (OPTION)

Power:

 $22 \text{ mA} / \ge 18 \text{ V}$

As analog outputs OUT3 or OUT4 and transmitter supply U are connected to different voltage potentials, an external galvanic connection between OUT3/4 and U is not permissible with analog outputs.

GALVANIC ISOLATION

Safety isolationFunction isolation

	Process value input INP1
Mains supply	Supplementary input INP2
	Optional input INP3
	Digital input di1, di2
Relay OUT1	RS422/485 interface
Relay OUT2	Digital inputs di2, 3
Relay OUT3	Universal output OUT3
Relay OUT4	Universal output OUT4
	Transmitter supply U _T
	OUT5, OUT6

OUTPUTS

RELAY OUTPUTS OUT1...OUT4

Contact type: potential-free changeover

contact Max.contact rating: 500 VA, 250 V, 2A at 48...62 Hz, resistive load

Min. contact rating: 6V, 1mA DC

Number of electical for I = 1A/2A: ≥ 800.000 / switching cycles: 500.000 (at ~ 250V (resistive

load)

Note:

If the relays operate external contactors, these must be fitted with RC snubber circuits to manufacturer specifications to prevent excessive switch-off voltage peaks.

OUT3, 4 AS UNIVERSAL OUTPUT

Galvanically isolated from the inputs.

Freely scalable resolution: 11 bits

Current output

Voltage output

0/210V configurable	
Signal range:	011 V
Min. load:	\geq 2 k Ω
Load effect:	no effect
Resolution:	≤11 mV (0,1%)
Accuracy	$\leq 20 \text{ mV} (0,2\%)$

OUT3, 4 used as transmitter supply

Output power: $22 \text{ mA} / \ge 13 \text{ V}$

OUT3, 4 used as logic output

Load \leq 500 Ω	$0/\leq 20 \text{ mA}$
Load > 500 Ω	0/> 13 V

OUTPUTS OUT5/6 (OPTION)

Galvanically isolated opto-coupler outputs. Grounded load: common positive voltage. Output rating: 18...32 VDC; \leq 70 mA Internal voltage drop: \leq 1 V with Imax Protective circuit: built-in against short circuit, overload, reversed polarity (free-wheel diode for relay loads).

POWER SUPPLY

Dependent of order:

AC SUPPLY

Voltage:	90250 V AC
Frequency:	4862 Hz
Power consumption	approx. 10 VA

UNIVERSAL SUPPLY 24 V UC

AC voltage:	20,426,4 V AC
Frequency:	4862 Hz
DC voltage:	1831 V DC class 2
Power consumption:	approx 10 VA

BEHAVIOUR WITH POWER FAILURE

Configuration, parameters and adjusted set-points, control mode: Non-volatile storage in EEPROM

BLUEPORT FRONT INTERFACE

Connection of PC via PC adapter (see "Accessory equipment"). The BlueControl software is used to configure, set parameters and operate the device.

BUS INTERFACE (OPTION)

Galvanically isolated Physical: RS 422/485 Protocol: Modbus RTU Transmission speed: 2400, 4800, 9600, 19.200 bits/sec Address range: 1...247 Number of controllers per bus: 32

Repeaters must be used to connect a higher number of controllers.

ENVIRONMENTAL CONDITIONS

Protection modes

Front panel:IP 65 (NEMA 4X)Housing:IP 20Terminals:IP 00

Permissible temperatures

For specified
accuracy: $0...60^{\circ}C$ Warm-up time: ≥ 15 minutesFor operation: $-20...65^{\circ}C$ For storage: $-40...70^{\circ}C$

Humidity

75% yearly average, no condensation

Altitude

To 2000 m above sea level

Shock and vibration

Vibration test Fc (DIN 68-2-6)

Frequency:10...150 HzUnit in operation:1g or 0,075 mmUnit not in operation:2g or 0,15 mm

Shock test Ea (DIN IEC 68-2-27)

Shock: 15g Duration: 11ms

Electromagnetic compatibility

Complies with EN 61 326-1 (for continuous, non-attended operation)

GENERAL

Housing

Material:Makrolon 9415 flame-retardantFlammability class:UL 94 VO, self-extinguishing

Plug-in module, inserted from the front

Safety test

Complies with EN 61010-1 (VDE 0411-1): Overvoltage category II Contamination class 2 Working voltage range 300 V Protection class II

Certifications

cULus-certification

(Type 1, indoor use) File: E 208286

Electrical connections

- flat-pin terminals 1 x 6,3mm or 2 x 2,8mm to DIN 46 244 or
- screw terminals for 0,5 to 2,5mm²
 On instruments with screw terminals, the insulation must be stripped by min. 12 mm. Choose end crimps accordingly.

Mounting

Panel mounting with two fixing clamps at top/bottom or right/left, High-density mounting possible

Mounting position:	uncritical
Weight:	0,27kg

Accessories delivered with the unit

Operating manual, Fixing clamps

Thermoelementtype	Measuring range		Accuracy	Resolution (\emptyset)
L Fe-CuNi (DIN)	-100900°C	-1481652°F	$\leq 2K$	0,1 K
J Fe-CuNi	-1001200°C	-1482192°F	$\leq 2K$	0,1 K
K NiCr-Ni	-1001350°C	-1482462°F	$\leq 2K$	0,2 K
N Nicrosil/Nisil	-1001300°C	-1482372°F	$\leq 2K$	0,2 K
S PtRh-Pt 10%	01760°C	323200°F	$\leq 2K$	0,2 K
R PtRh-Pt 13%	01760°C	323200°F	$\leq 2K$	0,2 K
T Cu-CuNi	-200400°C	-328752°F	$\leq 2K$	0,05 K
C W5%Re-W26%Re	02315°C	324199°F	$\leq 2K$	0,4 K
D W3%Re-W25%Re	02315°C	324199°F	$\leq 2K$	0,4 K
E NiCr-CuNi	-1001000°C	-1481832°F	$\leq 2K$	0,1 K
B* PtRh-Pt6%	0(100)1820°C	32(212)3308°F	$\leq 2K$	0,3 K

Table 1 Thermocouples measuring ranges

* Specifications valid for 400°C

Table 2	Resistance	transducer	measuring ranges
---------	------------	------------	------------------

Туре	Signal current	Measuring range		Accuracy	Resolution (\emptyset)
Pt100		-200100°C (150)**	-140212°F	$\leq 1 \mathrm{K}$	0,1K
Pt100	-	-200850°C	-1401562°F	$\leq 1 \mathrm{K}$	0,1K
Pt1000		-200850°C	-1401562°F	$\leq 2K$	0,1K
KTY 11-6*		-50150°C	-58302°F	$\leq 2K$	0,05K
Spezial	0,2mA	04500		≤ 0,02 %	
Spezial		0450 0160 0450			
Poti					0,01 %
Poti					0,0170
Poti		016	00		
Poti		045	00		

* Or special

** Measuring range 150°C with reduced lead resistance. Max. 160 Ω for meas. and lead resistances (150°C \triangleq 157,33 Ω).

 Table 3 Current and voltage measuring ranges

Measuring range	Input impedance	Accuracy	Resolution (\emptyset)
0-10 Volt	$\approx 110 \mathrm{k}\Omega$	$\leq 0.1\%$	0,6 mV
-2,5-115 mV	$\geq 1M\Omega$	$\leq 0,1\%$	$6 \mu V$
-25-1150 mV	$\geq 1M\Omega$	$\leq 0,1\%$	60 μV
0-20 mA	20 Ω	$\leq 0,1\%$	$1,5 \mu A$

12 Safety hints

This unit

- was built and tested in compliance with VDE 0411-1 / EN 61010-1 and delivered in safe condition.
- complies with European guideline 89/336/EWG (EMC) and is provided with CE marking.
- was tested before delivery and has passed the tests required by the test schedule. To maintain this condition and to ensure safe operation, the user must follow the hints and warnings given in this operating manual.
- is intended exclusively for use as a measurement and control instrument in technical installations.

Warning

If the unit is damaged to an extent that safe operation seems impossible, the unit must not be taken into operation.

ELECTRICAL CONNECTIONS

The electrical wiring must conform to local standards (e.g. VDE 0100). The input measurement and control leads must be kept separate from signal and power supply leads. In the installation of the controller a switch or a circuit-breaker must be used and signified. The switch or circuit-breaker must be installed near by the controller and the user must have easy access to the controller.

COMMISSIONING

Before instrument switch-on, check that the following information is taken into account:

- Ensure that the supply voltage corresponds to the specifications on the type label.
- All covers required for contact protection must be fitted.
- If the controller is connected with other units in the same signal loop, check that the equipment in the output circuit is not affected before switch-on. If necessary, suitable protective measures must be taken.
- The unit may be operated only in installed condition.
- Before and during operation, the temperature restrictions specified for controller operation must be met.

SHUT-DOWN

For taking the unit out of operation, disconnect it from all voltage sources and protect it against accidental operation. If the controller is connected with other equipment in the same signal loop, check that other equipment in the output circuit is not affected before switch-off. If necessary, suitable protective measures must be taken.

MAINTENANCE, REPAIR AND MODIFICATION

The units do not need particular maintenance.

Warning

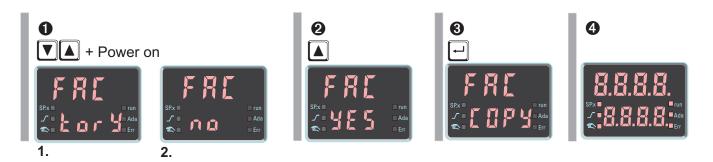
When opening the units, or when removing covers or components, live parts and terminals may be exposed.

Before starting this work, the unit must be disconnected completely.

After completing this work, re-shut the unit and re-fit all covers and components. Check if specifications on the type label must be changed and correct them, if necessary.

Caution

When opening the units, components which are sensitive to electrostatic discharge (ESD) can be exposed. The following work may be done only at workstations with suitable ESD protection.


Modification, maintenance and repair work may be done only by trained and authorized personnel. For this purpose, the PMA service should be contacted.

The cleaning of the front of the controller should be done with a dry or a wetted (spirit, water) handkerchief.

12.1 Resetting to factory setting or to a customer-specific data set

In case of faultyconfiguration, the device can be reset to the default condition. Unless changed, this basic setting is the manufacturer-specific controller default setting. However, this setting may have been changed by means of the BlueControl[®] software. This is recommendable e.g. when completing commissioning in order to cancel accidental alteration easily. Resetting can be activated as follows:

The operator must keep the keys increment and decrement pressed during power-on.

Then, press key increment to select **YE 5**.

Confirm factory resetting with Enter and the copy procedure is started (display $\Box P \exists$).

Afterwards the device restarts.

In all other cases, no reset will occur (timeout abortion).

If one of the operating levels was blocked and the safety lock is open, reset to factory setting is not possible.

- If a pass number was defined (via BlueControl[®]) and the safety lock is open, but no operating level was blocked, enter the correct pass number when prompted in
 A wrong pass number aborts the reset action.
- The copy procedure $(\Box \Box P \lor)$ can take some seconds. Now, the transmitter is in normal operation.

Index

0-9 2-point correction	56
A Alarm handling	26
В	
Bargraph	11 72
Technical Data	76
C Calibration level (ERL)	58
Certifications	
Configuration examples	
2-point controller	45 46
Continuous controller	47
D - Y -Off controller	49
Configuration level	
Configuration parameters 29 -	41 20
Parameter survey	
Connecting examples	0
di2/3, 2-wire transmitter supply	8
INP2 current transformer \dots \dots \dots	7
OUT1/2 heating/cooling	
OUT3 transmitter supply	9
RS485 interface	9
Control inputs di1, di2, di3 Technical data	74
Cooling functions	
Constant period	43
Standard	43 74
Current signal measuring range	/4
D	
Digital inputs di1, di2, di3	•
Configuration	36 74

E								
Environmental conditions	•	•				•		76
Equipment	•	•	•	•	•	•	•	73

Error list	13
F Front view	11
I	
Input INP1	
Configuration	30
Parameters.	54 74
Technical data	/4
Input INP2 Configuration	21
ConfigurationParametersTechnical data	51 54
Technical data	74
Input INP3	
Configuration	32
Parameters	54
Input scaling	55
L	
LED	
Ada - LED	11
Err - LED	
func - LED	11
\int - LED	11
LED colours	 1 1
~ LED	
SP.2 - LED	
SP.x - LED	11
Linearization	
M 12	1 /
Maintenance manager 13 -	
Manual tuning	
Modbus master	
Mounting	Э
0	
Offset correction	56
Optimization at setpoint	18
Output OUT1	
Configuration	34
Technical data	75
Output OUT2	
Configuration	34
	15
Output OUT3	<u>م</u> د
Configuration	33

Technical data
Configuration
Output OUT5 Configuration
Output OUT6 Configuration
P
Parameter setting level Parameter survey
R Ramp
S Safety hints
Self-tuning Cancelation21 Cancelation causes21Setpoint gradient42Set-point processing42
T Thermocouple measuring range 74
V Versions

Subject to alterations without notice Änderungen vorbehalten Sous réserve de toutes modifications © PMA Prozeß- und Maschinen-Automation GmbH P.O.B. 310 229, D-34058 Kassel, Germany Printed in Germany 9499-040-66111 (08/2013)